Skip to main content
Log in

β-1,3-glucanase and chitinase activities in winter triticales during cold hardening and subsequent infection by Microdochium nivale

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The accumulation of pathogenesis-related proteins such as β-1,3-glucanases and chitinases was studied in cold induced snow mould resistance in two Polish cultivars of winter triticale, cv. Hewo and cv. Magnat that substantially differ in resistance to Microdochium nivale. The plants were pre-hardened at 12°C for 10 days and hardened at 4°C for 28 days. Subsequently, cold hardened plants were inoculated with fungal mycelium (M. nivale) and incubated at 4°C for 7 days in dark. Cold acclimatisation resulted in suppression of the total glucanase and chitinases activities in the resistant Hewo as well as sensitive Magnat cultivars that possibly coincides with altered metabolism. However, upon infection with M. nivale the chitinases were markedly induced in the cv. Hewo. At the same time, total β-1,3 glucanases activities did not seem to be affected by fungus in any of the tested triticale cultivars. The pattern and/or the activity of chitinases in plants might be indicative for the resistance/susceptibility against M. nivale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Ergon A., Klemsdal S.S. & Tronsmo A.M. 1998. Interactions between cold hardening and Microdochium nivale infection on expression of pathogenesis-related genes in winter wheat. Physiol. Mol. Plant Pathol. 53: 301–310.

    Article  CAS  Google Scholar 

  • Figueiredo A., Monteiro F., Fortes A.M., Bonow-Rex M., Zyprian E., Sousa L. & Pais M.S. 2012. Cultivar-specific kinetics of gene induction during downy mildew early infection in grapevine. Funct. Integr. Genomics 12: 379–386.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira R.B., Monteiro S., Freitas R., Santos C.N., Chen Z., Batista L.M., Duarte J., Borges A. & Teixeira A.R. 2007. The role of plant defence proteins in fungal pathogenesis. Mol. Plant. Pathol. 8: 677–700.

    Article  PubMed  CAS  Google Scholar 

  • Gaudet D.A., Laroche A. & Yoshida M. 1999. Low temperaturewheat-fungal interactions: A carbohydrate connection. Physiol. Plant. 106: 437–444.

    Article  CAS  Google Scholar 

  • Gaudet D.A., Laroche A., Frick M., Davoren J., Puchalski B. & Ergon A. 2000. Expression of plant defence-related (PRprotein) transcripts during hardening and dehardening of winter wheat. Physiol. Mol. Plant Pathol. 57: 15–24.

    Article  CAS  Google Scholar 

  • Gaudet D.A., Laroche A., Frick M., Huel R. & Puchalski B. 2003. Plant development affects the cold-induced expression of plant defence-related transcripts in winter wheat. Physiol. Mol. Plant Pathol. 62: 175–184.

    Article  CAS  Google Scholar 

  • Gilmour S.J., Sebolt A.M., Salazar M.P., Everard J.D. & Thomashow M.F. 2000. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol. 124: 1854–1865.

    Article  PubMed  CAS  Google Scholar 

  • Golebiowska G. & Wedzony M. 2009. Cold-hardening of winter triticale (× Triticosecale Wittm.) results in increased resistance to pink snow mould Microdochium nivale (Fr., Samuels & Hallett) and genotype-dependent chlorophyll fluorescence modulations. Acta Physiol. Plant. 31: 1219–1227.

    Article  CAS  Google Scholar 

  • Griffith M. & Yaish M.W.F. 2004. Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci. 9: 399–405.

    Article  PubMed  CAS  Google Scholar 

  • Grover A. 2012. Plant chitinases: Genetic diversity and physiological roles. Crit. Rev. Plant Sci. 31: 57–73.

    Article  CAS  Google Scholar 

  • Hiilovaara-Teijo M., Hannukkala A., Griffith M., Yu X.M. & Pihakaski-Maunsbach K. 1999. Snow-mold-induced apoplastic proteins in winter rye leaves lack antifreeze activity. Plant Physiol. 121: 665–673.

    Article  PubMed  CAS  Google Scholar 

  • Hon W.C., Griffith M., Mlynarz A., Kwok Y.C. & Yang D.S.C. 1995. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol. 109: 879–889.

    Article  PubMed  CAS  Google Scholar 

  • Chen X.Y. & Kim J.Y. 2009. Callose synthesis in higher plants. Plant Signal. Behav. 4: 489–492

    Article  PubMed  CAS  Google Scholar 

  • Jackson M.W., Stinchcombe J.R., Korves T.M. & Schmitt J. 2004. Costs and benefits of cold tolerance in transgenic Arabidopsis thaliana. Mol. Ecol. 13: 3609–3615.

    Article  PubMed  CAS  Google Scholar 

  • Kasprzewska A. 2003. Plant chitinases — Regulation and function. Cell. Mol. Biol. Lett. 8: 809–824.

    PubMed  CAS  Google Scholar 

  • Kuwabara C. & Imai R. 2009. Molecular basis of disease resistance acquired through cold acclimation in overwintering plants. J. Plant Bio. 52: 19–26.

    Article  CAS  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Libantova J., Kamarainen T., Moravcikova J., Matusikova I. & Salaj J. 2009. Detection of chitinolytic enzymes with different substrate specificity in tissues of intact sundew (Drosera rotundifolia L.). Mol. Bio. Rep. 36: 851–856.

    Article  CAS  Google Scholar 

  • Matsumoto N. & Nissinen O. 2001. Environmental conditions that affect snow mould development, pp. 13–22. In: Iriki N., Gaudet D.A., Tronsmo A.M., Matsumoto N., Yoshida M. & Nishimune A. (eds), Low temperature plant microbe interactions under snow, Hokkaido National Agricultural Experiment Station, Sapporo.

    Google Scholar 

  • Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  • Muthukrishnan S., Liang G.H., Trick H.N. & Gill B.S. 2001. Pathogenesis-related proteins and their genes in cereals. Plant Cell Tiss. Org. 64: 93–114.

    Article  CAS  Google Scholar 

  • Na B., Yu M.-K., Gong J. & Wu J. 2002. Purification and characterization of antifungal proteins in triticale seed. Sheng wu gong cheng xue bao. Chin. J. Biotechnol. 18: 561–565.

    CAS  Google Scholar 

  • Nakajima T. & Abe J. 1996. Environmental factors affecting expression of resistance to pink snow mold caused by Microdochium nivale in winter wheat. Can. J. Bot. 74: 1783–1788.

    Article  Google Scholar 

  • Nakamura T., Ishikawa M., Nakatani H. & Oda A. 2008. Characterization of cold-responsive extracellular chitinase in bromegrass cell cultures and its relationship to antifreeze activity. Plant Physiol. 147: 391–401.

    Article  PubMed  CAS  Google Scholar 

  • Pan S.Q., Ye X.S. & Kuc J. 1991. A technique for detection of chitinase, beta-1,3-glucanase, and protein-patterns after a single separation using polyacrylamide-gel electrophoresis or isoelectrofocusing. Phytopathol. 81: 970–974.

    Article  CAS  Google Scholar 

  • Plazek A., Dubert F., Pociecha E., Janowiak F., Kolasinska I. & Maciejewski M. 2011. Resistance of winter rye (Secale cereale L.) to Microdochium nivale depends on soluble carbohydrate content but not on abscisic acid level. J. Phytopathol. 159: 751–758.

    Article  CAS  Google Scholar 

  • Pihakaski-Maunsbach K., Moffatt B., Testillano P., Risueńo M., Yeh S., Griffith M. & Maunsbach A.B. 2001. Genes encoding chitinase-antifreeze proteins are regulated by cold and expressed by all cell types in winter rye shoots. Physiol. Plant. 112: 359–371

    Article  PubMed  CAS  Google Scholar 

  • Prończuk M. & Madej L.J. 1996. Evaluation of Microdochium nivale infection on rye genotypes using different methods. Vortr Pflanzenzuchtg 35: 190–192

    Google Scholar 

  • Prończuk M., Madej L. & Kolasińska I. 2003. Research for resistance to Microdochium nivale among inbred lines of rye. Plant Breed. Seed Sci. 48: 83–86

    Google Scholar 

  • Roitsch T., Balibrea M.E., Hofmann M., Proels R.& Sinha A.K. 2003. Extracellular invertase: key metabolic enzyme and PR protein. J. Exp. Bot. 54: 513–524.

    Article  PubMed  CAS  Google Scholar 

  • Roy Choudhury S., Roy S., Singh S.K. & Sengupta D.N. 2010. Molecular characterization and differential expression of beta-1,3-glucanase during ripening in banana fruit in response to ethylene, auxin, ABA, wounding, cold and light-dark cycles. Plant Cell Rep. 29: 813–828.

    Article  PubMed  CAS  Google Scholar 

  • Rybka K., Arseniuk E., Wisniewska J. & Raczynska-Bojanowska K. 1998. Comparative studies on the activities of chitinase, beta-1,3-glucanase, peroxidase and phenylalanine ammonia lyase in the leaves of triticale and wheat infected with Stagonospora nodorum. Acta Physiol. Plant 20: 59–66.

    Article  CAS  Google Scholar 

  • Takenaka Y., Nakano S., Tamoi M., Sakuda S. & Fukamizo T. 2009. Chitinase gene expression in response to environmental stresses in Arabidopsis thaliana: Chitinase inhibitor allosamidin enhances stress tolerance. Biosci. Biotech. & Bioch. 73: 1066–1071.

    Article  CAS  Google Scholar 

  • Tronsmo A.M., Hsiang T., Okuyama H. & Nakajima T. 2001. Low temperature diseases caused by Microdochium nivale, pp. 75–86. In: Iriki N., Gaudet D.A., Tronsmo A.M., Matsumoto N., Yoshida M. & Nishimune A. (eds), Low temperature plant microbe interactions under snow, Hokkaido National Agricultural Experiment Station, Sapporo.

    Google Scholar 

  • Trudel J. & Asselin A. 1989. Detection of chitinase activity after polyacrylamide-gel electrophoresis. Anal. Biochem. 178: 362–366.

    Article  PubMed  CAS  Google Scholar 

  • Yaish M.W.F., Doxey A.C., McConkey B.J., Moffatt B.A. & Griffith M. 2006. Cold-active winter rye glucanases with icebinding capacity. Plant Physiol. 141: 1459–1472.

    Article  PubMed  CAS  Google Scholar 

  • Yasuda M., Ishikawa A., Jikumaru Y., Seki M., Umezawa T., Asami T., Maruyama-Nakashita A., Kudo T., Shinozaki K., Yoshida S. & Nakashita H. 2008. Antagonistic interaction between systemic acquired resistance and the abscisic acidmediated abiotic stress response in Arabidopsis. Plant Cell 20: 1678–1692.

    Article  PubMed  CAS  Google Scholar 

  • Yeh S., Moffatt B.A., Griffith M., Xiong F., Yang D.S.C., Wiseman S.B., Sarhan F., Danyluk J., Xue Y.Q., Hew C.L., Doherty-Kirby A.& Lajoie G. 2000. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol. 124: 1251–1263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Moravčíková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Żur, I., Gołębiowska, G., Dubas, E. et al. β-1,3-glucanase and chitinase activities in winter triticales during cold hardening and subsequent infection by Microdochium nivale . Biologia 68, 241–248 (2013). https://doi.org/10.2478/s11756-013-0001-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-013-0001-0

Key words

Navigation