Skip to main content
Log in

Thermal and acido-basic stability of antioxidant properties of extracts from cereal and pseudocereal grains

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Beneficial effects of whole grains of cereals and pseudocereals and their fractions to human physiology are well known and broadly published. Especially secondary metabolites, dominantly from the category of phenolics (or polyphenols), beneficially influence the health physiology and/or prevent disease progress. Within the frame of this study, ten genotypes of four cereals or pseudocereals, respectively, were chosen for their antioxidant activity, determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP) and β-carotene-linoleic acid bleaching model (BCLM) mechanisms. Tested genotypes were selected from primary collection based on their antioxidant activity values, as well as higher level of flavonoids or phenolic acids. The stability of antioxidant properties after thermic, acidic, and basic treatments was evaluated. The oat cultivar Sirene and buckwheat cultivar Bogatyr expressed high level of the antioxidant activity, but they lost it due to all types of treatment. Oppositely, treatments increased antioxidant activities in some samples, especially in oat cultivar Maris Oberon, wheat cultivar Ines and Karolinum, or partially in barley cultivars Kompakt (after basic treatment) and Jubilant (acidic and basic treatments). The lack of the antioxidant activity could be observed due to destruction of the key compounds responsible for the antioxidant effect, whereas the increasing activity could be seen due to release of the aglycons from glycosidic forms after treatment. The stability of antioxidant properties could be a valuable parameter of the raw material for manufacturing special foods with functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid

BCLM:

β-carotene-linoleic acid bleaching model

BHA:

butylhydroxyanizol

DMSO:

dimethyl sulphoxide

DPPH:

2,2-diphenyl-1-picrylhydrazyl

FRAP:

ferric reducing antioxidant power

GAE:

equivalent of gallic acid

QUE:

equivalent of quercetin

TBA:

thiobarbituric acid

TCA:

trichloroacetic acid

References

  • Čukelj N., Jakasa I., Sarajlija H., Novotni D. & Curic D. 2011. Identification and quantification of lignans in wheat bran by gas chromatography-electron capture detection. Talanta 84: 127–132.

    Article  PubMed  Google Scholar 

  • Dykes L. & Rooney L.W. 2007. Phenolic compounds in cereal grains and their health benefits. Cereal Food World 52: 105–111.

    CAS  Google Scholar 

  • Dziedzic S.Z. & Hudson B.J.F. 1983. Polyhydroxy chalcones and flavanones as antioxidants for edible oils. Food Chem. 12: 205–212.

    Article  CAS  Google Scholar 

  • Fagerlund A., Sunnerheim K. & Dimberg L.H. 2009. Radicalscavenging and antioxidant activity of avenanthramides. Food Chem. 113: 550–556.

    Article  CAS  Google Scholar 

  • Fardet A., Rock E. & Rémésy C. 2008. Is the in vitro antioxidant potential of whole-grain cereals and cereal products well re-flected in vivo? J. Cereal Sci. 48: 258–276.

    Article  CAS  Google Scholar 

  • Friedman M. & Jürgens H.S. 2000. Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem. 48: 2101–2110.

    Article  PubMed  CAS  Google Scholar 

  • Gelmez N.N., Kincal M.S. & Yener E. 2009. Optimization of supercritical carbon dioxide extraction of antioxidants from roasted wheat germ based on yield, total phenolic and tocopherol contents, and antioxidant activities of the extracts. J. Supercrit. Fluids 48: 217–224.

    Article  CAS  Google Scholar 

  • Hatano T., Kagawa H., Yasuhara T. & Okuda T. 1988. Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36: 2090–2097.

    Article  PubMed  CAS  Google Scholar 

  • Inglett G.E., Chen D., Berhow M. & Lee S. 2011. Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions. Food Chem. 125: 923–929.

    Article  CAS  Google Scholar 

  • Ivanišová E., Ondrejovič M., Dráb Š. & Tokár M. 2011. The evaluation of antioxidant activity of milling fractions of selected cereals grown in the year 2010. Potravinarstvo 5: 28–33.

    Google Scholar 

  • Jayaprakasha G.K., Jaganmohan Rao L. & Sakariah K.K. 2004. Antioxidant activities of flavidin in different in vitro model systems. Bioorg. Med. Chem. 1: 5141–5146.

    Article  Google Scholar 

  • Jiang P., Burczynski F., Campbell C., Pierce G., Austria J.A. & Briggs C.J. 2007. Rutin and flavonoid contents in three buckwheat species Fagopyrum esculentum, F. tataricum, and F. homotropicum and their protective effects against lipid peroxidation. Food Res. International 40: 356–364.

    Article  CAS  Google Scholar 

  • Kähkönen M.P. & Heinonen M. 2003. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 51: 628–633.

    Article  PubMed  Google Scholar 

  • Lehner A., Mamadou N., Poels P., Côme D., Bailly C. & Corbineau F. 2008. Changes in soluble carbohydrates, lipid peroxidation and antioxidant enzyme activities in the embryo during ageing in wheat grains. J. Cereal Sci. 47: 555–565.

    Article  CAS  Google Scholar 

  • Li W., Pickard M.D. & Beta T. 2007. Effect of thermal processing on antioxidant properties of purple wheat bran. Food Chem. 104: 1080–1086.

    Article  CAS  Google Scholar 

  • Liu S., Sesso H.D., Manson A.E., Willett W.C. & Buring J.E. 2003. Is intake of breakfast cereals related to total and causespecific mortality in men? Am. J. Clin. Nutr. 77: 594–599.

    PubMed  CAS  Google Scholar 

  • Maliar T., Drobná J., Kraic J., Maliarová M. & Jurovatá J. 2011. Proteinase inhibition and antioxidant activity of selected forage crops. Biologia 66: 96–103.

    Article  CAS  Google Scholar 

  • Oyaizu M. 1986. Studies on product of browning reaction prepared from glucose amine. Jpn. J. Nutr. 44: 307–315.

    Article  CAS  Google Scholar 

  • Peterson D.M., Hahn M.J. & Emmons C.L. 2002. Oat avenanthramides exhibit antioxidant activities in vitro. Food Chem. 79: 473–478.

    Article  CAS  Google Scholar 

  • Piironen V., Lampi A.M., Ekholm P., Salmenkallio-Marttila M. & Liukkonen K.H. 2009. Micronutrients and phytochemicals in wheat grain, pp. 179–222. In: Khalil K. & Shewry P.R. (eds.), Wheat: Chemistry and Technology, AACC International, St. Paul.

    Google Scholar 

  • Quettier-Deleu C., Gressier B., Vasseur J., Dine T., Brunet C., Luyckx M., Cazin M., Cazin J.C., Bailleul F. & Trotin F. 2000. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum, Moench) hulls and flour. J. Ethnopharmacol. 72: 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Ragaee S., Guzar I., Dhull N., & Seetharaman K. 2011. Effects of fiber addition on antioxidant capacity and nutritional quality of wheat bread. Food Sci. Technol. 44: 2147–2153.

    CAS  Google Scholar 

  • Rakotoarison D.A., Gressier B., Trotin F., Brunet C., Dine T., Luyckx M., Vasseur J., Cazin M., Cazin J.C. & Pinkas M. 1997. Antioxidant activities of polyphenolic extracts from flowers, in vitro callus and cell suspension cultures of Crataegus monogyna. Pharmazie 52: 60–64.

    PubMed  CAS  Google Scholar 

  • Randhir R., Kwon Y. & Shetty K. 2008. Effect of thermal processing on phenolics, antioxidant activity and health-relevant functionality of select grain sprouts and seedlings. Innovative Food Sci. Emerg. Technol. 9: 355–364.

    Article  CAS  Google Scholar 

  • Ryan L., Thondre P.S. & Henry C.J.K. 2011. Oat-based breakfast cereals are a rich source of polyphenols and high in antioxidant potential. J. Food Comp. Anal. 24: 929–934.

    Article  CAS  Google Scholar 

  • Sedej I., Sakač M., Mandic A., Mišan A., Tumbas V. & Hadnadev M. 2011. Assessment of antioxidant activity and rheological properties of wheat and buckwheat milling fractions. J. Cereal Sci. 54: 347–353.

    Article  CAS  Google Scholar 

  • Sharma P. & Singh G.H. 2010. Antioxidant and polyphenol oxidase activity of germinated barley and its milling fractions. Food Chem. 120: 673–678.

    Article  CAS  Google Scholar 

  • Sharma P., Singh G.H. & Singh B. 2012. Antioxidant activity of barley as affected by extrusion cooking. Food Chem. 131: 1406–1413.

    Article  CAS  Google Scholar 

  • Singleton V.L. & Rossi J.A. 1965. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 16: 144–158.

    CAS  Google Scholar 

  • Stratil P., Klejdus B. & Kubáň V. 2007. Determination of phenolic compounds and their antioxidant activity in fruits and cereals. Talanta 71: 1741–1751.

    Article  PubMed  CAS  Google Scholar 

  • Vadivel V. & Biesalski H.K. 2012. Effect of certain indigenous processing methods on the bioactive compounds of ten different wild type legume grains. J. Food Sci. Technol. 49: 673–684.

    Article  CAS  Google Scholar 

  • Wende L., Pickard M.D. & Beta T. 2007. Effect of thermal processing on antioxidant properties of purple wheat bran. Food Chem. 104: 1080–1086.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Maliar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maliar, T., Maliarová, M., Kraic, J. et al. Thermal and acido-basic stability of antioxidant properties of extracts from cereal and pseudocereal grains. Biologia 68, 99–104 (2013). https://doi.org/10.2478/s11756-012-0141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0141-7

Key words

Navigation