Biologia

, Volume 67, Issue 6, pp 1152–1164 | Cite as

Estimating effects of global warming from past range changes for cold demanding refugial taxa: A case study on South-west Anatolian species Poecilimon birandi

Section Zoology
  • 166 Downloads

Abstract

Although changes in biodiversity and in ecosystems are surely caused by a range of interacting drivers, such as natural or human-induced factors, one of the important drivers having major impacts on climate and biodiversity and leading to range changes and fragmentation is global warming. Defining past range changes/fragmentations during interglacial periods may provide tools to understand possible impacts of global warming on present biodiversity. To test this assumption we studied a marker gene in the bush-cricket Poecilimon birandi, a species confined to South-west Anatolia that demands a cold climate. Haplotypes of P. birandi constituted three main phylogroups,West, East and Demre. All haplotypes are unique to the respective phylogroup. An AMOVA suggested considerable divergence at all hierarchical levels. Though there is a strong isolation between phylogroups, the East and West groups harbour considerable haplotype diversity. Most of the demographic analyses suggest stable historical populations for the West and East phylogroups, but a coalescent-based demographic analysis indicates a bottleneck for the West phylogroup. The main conclusions are; (i) P. birandi contains considerable phylogenetic signal in 16S rDNA, (ii) there were at least three contemporaneous radiations, which might have originated from isolated refugial populations during Pleistocene, (iii) within a refugium, range changes induced by climatic shifts may be only vertical through an altitudinal gradient, (iv) significant genetic structure can arise in a small heterogeneous area, if the species requires particular habitats and has weak dispersal ability, (v) climatic shifts may cause fragmentation or extinction of populations, but can also lead to divergence of populations suffering from fragmentation, and (vi) altitudinal heterogeneity plays a buffering role, allowing for survival of the refugial biodiversity.

Key words

phylogeography global warming glacial refugia conservation biology Poecilimon birandi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aljanabi S.M. & Martinez I. 1997. Universal and rapid saltextraction of high quality genomic DNA for PCR-based techniques. Nucl. Acids Res. 25(22): 692–693. DOI: 10.1093/nar/25.22.4692CrossRefGoogle Scholar
  2. Allegrucci G., Rampini M., Gratton P., Todisco V. & Sbordoni V. 2009. Testing phylogenetic hypotheses for reconstructing the evolutionary history of Dolichopoda cave crickets in the eastern Mediterranean. J. Biogeogr. 36(9): 1785–1797. DOI: 10.1111/j.1365-2699.2009.02130.xCrossRefGoogle Scholar
  3. Avise J.C. 2001. Phylogeography. The History and the Formation of Species. Harvard University Press, Cambridge, 447 pp. ISBN-10: 0674666380, ISBN-13: 978-0674666382Google Scholar
  4. Bandelt H.J., Forster F. & Röhl A. 1999. Median-Joining Networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16(1): 37–48.PubMedCrossRefGoogle Scholar
  5. Bei-Bienko G.Y. 1954. Fauna of the U.S.S.R., N.S. No. 59. Orthoptera Vol. II, No. 2. Tettigonioidea, Phaneropterinae. Zoological Institute of the Academy of the Sciences of the USSR, 385 pp.Google Scholar
  6. Bohonak A.J. 2002. IBD (Isolation by distance): a program for analysis of isolation by distance. J. Hered. 93(2): 153–154. DOI: 10.1093/jhered/93.2.153PubMedCrossRefGoogle Scholar
  7. Brower A.V.Z. 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from pattern of mitochondrial DNA evolution. Proc. Natl. Acad. Sci. USA 91(14): 6491–6495.PubMedCrossRefGoogle Scholar
  8. Carstens B.C. & Knowles L.L. 2007. Shifting distributions and speciation: species divergence during rapid climate change. Mol. Ecol. 16(3): 619–627. DOI: 10.1111/j.1365-294X.2006.03167.xPubMedCrossRefGoogle Scholar
  9. Challis R.J., Mutun S., Nieves-Aldrey J.L., Preuss S., Rokas A., Aebi E., Sadeghi E., Tavakoli M. & Stone G. 2007. Longitudinal range expansion and cryptic eastern species in the western Palaearctic oak gallwasp, Andricus coriarius. Mol. Ecol. 16(10): 2103–2114. DOI: 10.1111/j.1365-294X.2006.03210.xPubMedCrossRefGoogle Scholar
  10. Çıplak B. 2003. Distribution of Tettigoniinae (Orthoptera, Tettigoniidae) bush-crickets in Turkey: the importance of the Anatolian Taurus Mountains in biodiversity and implication for conversation. Biodiv. Conserv. 12(1): 47–64. DOI:10.1023/A:1021206732679CrossRefGoogle Scholar
  11. Çıplak B. 2004. Systematics, phylogeny and biogeography of Anterastes (Orthoptera, Tettigoniidae, Tettigoniinae): Evolution within a refugium. Zool. Scr. 33(1): 19–44. DOI: 10.1111/j.1463-409.2004.00131.xCrossRefGoogle Scholar
  12. Çıplak B. 2008. The analogy between glacial cycles and global warming for the glacial relicts in a refugium: a biogeographic perspective for conservation of Anatolian Orthoptera, pp. 135–163. In: Fattorini S. (ed.), Insect Diversity and Conservation, Research Signpost Inc., Kerela, 317 pp. ISBN: 978-81-308-0297-8Google Scholar
  13. Çıplak B., Demirsoy A. & Bozcuk A.N. 1992. Türkiye tettigoniidlerinin Anadolu Diagonaline göre yayılışları ve hareket yeteneği ile ilişkisi [Distribution of Turkish tettigoniids in relation to Anatolian Diagonal and their moving ability], pp. 373–385. In: Anonymous (ed.), Turkiye 2. Entomoloji Kongresi Bildirileri [Proceedings of the Second Turkish National Congress of Entomology], Adana, Turkey, Çukurova University, Adana, Turkey, 747 pp.Google Scholar
  14. Çıplak B., Gündüz I. & Kaya S. 2010. Phylogeography of Anterastes serbicus species group (Orthoptera, Tettigoniidae): Phylogroups correlate with mountain belts, but not with the morphospecies. J. Orthop. Res. 19(1): 89–100. DOI: http://dx.doi.org/10.1665/034.019.0115 CrossRefGoogle Scholar
  15. Çıplak B., Sirin D., Taylan M.S. & Kaya S. 2008. Altitudinal size clines, species richness and population density: case studies in Orthoptera. J. Orthop. Res. 17(2): 157–163. DOI: http://dx.doi.org/10.1665/1082-6467-17.2.157 CrossRefGoogle Scholar
  16. Cooper J.B., Ibrahim K.M. & Hewitt G.M. 1995. Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Mol. Ecol. 4(1): 49–60. DOI: 10.1111/j.1365-294X.1995.tb00191.xPubMedCrossRefGoogle Scholar
  17. Cruickshank R.H. 2002. Molecular markers for the phylogenetics of mites and ticks. Syst. Appl. Acarol. 7: 3–14.Google Scholar
  18. Drummond A.J. & Rambout A. 2007. BEAST: Bayesian evolutionary analyses by sampling trees. BMC Evol. Biol. 7: 214–221. DOI: 10.1186/1471-2148-7-214PubMedCrossRefGoogle Scholar
  19. Durka W., Bossdorf O., Prati D. & Auge H. 2005. Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Mol. Ecol. 14(6): 1697–1706. DOI: 10.1111/j.1365-294X.2005.02521.xPubMedCrossRefGoogle Scholar
  20. Excoffier L., Laval G. & Schneider S. 2005. Arlequin v.3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47–50. PMCID: PMC2658868Google Scholar
  21. Excoffier L., Smouse P.E. & Quattro J.M. 1992. Analysis of molecular variance inferred from metric distance among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131(2): 479–491.PubMedGoogle Scholar
  22. Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39(4): 783–791.CrossRefGoogle Scholar
  23. Frankham R., Ballou J.D. & Briscoe D.A. 2004. Introduction to Conservation Genetics. Cambridge University Press, Cambridge, 617 pp. ISBN: 0521639859, 978-0521639859Google Scholar
  24. Frankham R. 2010. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143(9): 1919–1927. DOI:10.1016/j.biocon.2010.05.011CrossRefGoogle Scholar
  25. Fu Y.X. 1996. New statistical tests of neutrality for samples from a population. Genetics 143(1): 557–570. PMID: 8722804PubMedGoogle Scholar
  26. Fu Y.X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2): 915–925. PMCID: PMC1208208PubMedGoogle Scholar
  27. Fu Y.X. & Li W.H. 1993. Statistical test of neutrality of mutations. Genetics 133(3): 693–709.PubMedGoogle Scholar
  28. Gobbi M., Fontaneto D. & De Bernardi F. 2006. Influence of climate changes on animal communities in space and time: the case of spider assemblages along an alpine glacier foreland. Mol. Ecol. 12(10): 2103–2114. DOI: 10.1111/j.1365-2486.2006.01236.xGoogle Scholar
  29. Gündüz I., Jaarola M., Tez C., Yeniyurt C., Polly P.D. & Searle J.B. 2007. Multigenic and morphometric differentiation of ground squirrels (Spermophilus, Scuiridae, Rodentia) in Turkey, with a description of a new species. Mol. Phylogen. Evol. 43(3): 916–935. DOI:10.1016/j.ympev.2007.02.021CrossRefGoogle Scholar
  30. Hampe A. & Petit R.J. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8(5): 461–467. DOI: 10.1111/j.1461-0248.2005.00739.xPubMedCrossRefGoogle Scholar
  31. Harpending H. 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatched distribution. Hum. Biol. 66(4): 591–600. PMID: 8088750PubMedGoogle Scholar
  32. Hewitt G.M. 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biol. J. Linn. Soc. 58: 247–276. DOI:10.1006/bijl.1996.0035Google Scholar
  33. Hewitt G.M. 1999. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68(1–2): 87–112. DOI: 10.1111/j.1095-8312.1999.tb01160.xCrossRefGoogle Scholar
  34. Hewitt G.M. 2004. Genetic consequences of climatic oscillation in the Quaternary. Phil. Trans. R. Soc. London B Biol. Sci. 359(1442): 183–195. DOI:10.1098/rstb.2003.1388CrossRefGoogle Scholar
  35. Jansson R. & Dynesius M. 2002. The fate of phylogroups in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu. Rev. Ecol. Syst. 33: 741–777. DOI:10.1146/annurev.ecolsys.33.010802.150520CrossRefGoogle Scholar
  36. Karabağ T. 1950. Five new species of Poecilimon Fischer (Orthoptera Tettigoniidae) from Turkey. Proc. R. Entomol. Soc. Lond. 19(9–10): 150–155. DOI: 10.1111/j.1365-3113.1950.tb00952.xGoogle Scholar
  37. Karabağ T. 1958. A Synonymic and Distributional Catalogue of Turkish Orthoptera. Ankara University, Science Faculty Press, Ankara, 198 pp.Google Scholar
  38. Knowles L.L. & Richard C.L. 2005. Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation. Mol. Ecol. 14(3): 4023–4032. DOI: 10.1111/j.1365-294X.2005.02711.xPubMedCrossRefGoogle Scholar
  39. Korkmaz E.M., Sarı M. & Basibüyük H.H. 2010. Genetic Structure of Chorthippus parallelus (Orthoptera: Acrididae: Gomphocerinae) Populations in Anatolia: A Stable Rear Edge Population. Ann. Entomol. Soc. Am. 103(4): 625–634. DOI: http://dx.doi.org/10.1603/AN09172 CrossRefGoogle Scholar
  40. Kuhner M.K. 2006. LAMARCK 2.0 maximum likelyhood and Bayesian estimation of population parameters. Bioinformatics 22(6): 768–770. DOI: 10.1093/bioinformatics/btk051PubMedCrossRefGoogle Scholar
  41. Lemey P., Salemi M. & Vandamme A.M. 2009. The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. 2nd Edition, Cambridge University Press, Cambridge, 723 pp. ISBN: 978-0521730716CrossRefGoogle Scholar
  42. Li H., Zhang Y., Zhang Y.P. & Fu Y.Z. 2003. Neutrality test using DNA polymorphism from multiple samples. Genetics 163(3): 1147–1151.PubMedGoogle Scholar
  43. Librado P. & Rozas J. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11): 1451–1452. DOI:10.1093/bioinformatics/btp187PubMedCrossRefGoogle Scholar
  44. Mantel N. 1967. The detection of disease of clustering and a generalized regression approach. Cancer Res. 27(2): 209–220. PMID: 6018555PubMedGoogle Scholar
  45. Muraji M., Kawasaki K. & Simizu T. 2000. Phylogenetic utility of nuclear sequences of mitochondrial 16S ribosomal RNA and cytochrom b gene in anthocorid bugs (Heteroptera: Anthocoridae). Appl. Entomol. Zool. 35(3): 293–300.CrossRefGoogle Scholar
  46. Nei M. & Li W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76(10): 5269–5273. DOI: 10.1073/pnas.76.10.5269PubMedCrossRefGoogle Scholar
  47. Öner E. 2000. Demre Cı deltasının jeomorfolojik gelişimi ve Myra antik kenti, liman ve St. Nicholas Kilisesi [Geomorphological development of the Demre Stream delta and Myra, Harbour and St. Nicholas Church], pp. 1–18. In: Olşen K., Bayram F., Dönmez H., Taş K. Güder N. & Toy N. (eds), T.C. Kültür Bakanlığı Anıtlar ve Müzeler Genel Müdürlüğü 16. Arkeometri Sonuçları Toplantısı, T.C. Kültür Bakanlığı, Anıtlar ve Müzeler Genel Müdürlüğü, Ankara, 120 pp. ISBN: 975-17-2561-5Google Scholar
  48. Ponel P., Orgeas J., Samways M.J., Andrieu-Ponel V., de Beaulieu J.-L., Reille M., Roche P. & Tatoni T. 2003. 110000 years of Quaternary beetle diversity change. Biodiv. Conserv. 12(10): 2077–2089. DOI: 10.1023/A:1024121327109CrossRefGoogle Scholar
  49. Posada D. & Crandall K.A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14(9): 817–818. DOI: 10.1093/bioinformatics/14.9.817PubMedCrossRefGoogle Scholar
  50. Ragge D.R. & Reynolds W.J. 1998. The Songs of the Grasshoppers and Crickets of Western Europe. Harley Books, London, 612 pp. ISBN: 0946589496, 978-0946589494Google Scholar
  51. Rambout A. 2008. FigTree v1.3.1. Available from: http://tree.bio.ed.ac.uk/software/FigTree/
  52. Rambout A. & Drummond A.J. 2003. Tracer v1.5. Available from: http://evolve.zoo.ox.ac.uk/
  53. Ramme W. 1933. Revision der Phaneropterinen-Gatung Poecilimon Fisch. (Orth. Tettigon). Mitt. Zool. Mus. Berlin 19: 497–575.Google Scholar
  54. Rokas A., Atkinson R.J., Webster L.M.I., Csoka G. & Stone G.N. 2003. Out of Anatolia: longitudinal gradients in genetic diversity support an eastern origin for a circum-Mediterranean oak gallwasp Andricus quercustozae. Mol. Ecol. 12(8): 2153–2174. DOI: 10.1046/j.1365-294X.2003.01894.xPubMedCrossRefGoogle Scholar
  55. Ronquist F. & Huelsenbeck J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574. DOI:10.1093/bioinformatics/btg180PubMedCrossRefGoogle Scholar
  56. Samways M.J., Ponel P. & Andrieu-Ponel M.J. 2006. Palaeobiodiversity emphasizes the importance of conserving landscape heterogeneity and connectivity. J. Insect. Conserv. 10(3): 215–218. DOI: 10.1007/s10841-005-6421-6CrossRefGoogle Scholar
  57. Schmidt H.A., Strimmer K., Vingron M. & von Haeseler A. 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18(3): 502–504. DOI: 10.1093/bioinformatics/18.3.502PubMedCrossRefGoogle Scholar
  58. Schmitt T. 2007. Molecular biography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4: 1–13. DOI:10.1186/1742-9994-4-11CrossRefGoogle Scholar
  59. Schmitt T. & Haubric K. 2008. The genetic structure of the mountain forest butterfly Erebia euryale unravels the late Pleistocene and postglacial history of the mountain coniferous forest biome in Europe. Mol. Ecol. 17(9): 2194–2207. DOI: 10.1111/j.1365-294X.2007.03687.xPubMedCrossRefGoogle Scholar
  60. Schneider S. & Excoffier L. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary amoung sites: application to human mitochondrial DNA. Genetics 152(3): 1079–1089.PubMedGoogle Scholar
  61. Schwartz M.W., Iverson L.R., Prasad A.M., Matthews S.N. & O’Connor R.J. 2006. Predicting extinctions as a result of climate change. Ecology 87(7): 1611–1615. DOI:10.1890/0012-9658(2006)87[1611:PEAARO]2.0.CO;2PubMedCrossRefGoogle Scholar
  62. Simon C., Frati F., Beckenbach A., Crespi B., Liu H. & Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87(6): 651–702.Google Scholar
  63. Strimmer K. & von Haeseler A. 1997. Likelihood mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc. Natl. Acad. Sci. USA 94: 6815–6819. PMID: 9192648PubMedCrossRefGoogle Scholar
  64. Swofford D.L. 2002. PAUP*: Pylogenetic Analysis Using Parsimony (*and other methods) 4.0 beta. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  65. Taberlet P., Fumagalli L., Wust-Saucy A.G. & Cosson J.F. 1998. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7(4): 453–464. DOI: 10.1046/j.1365-294x.1998.00289.xPubMedCrossRefGoogle Scholar
  66. Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3): 585–595.PubMedGoogle Scholar
  67. Tamura K. & Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10(3): 512–526. PMID: 8336541PubMedGoogle Scholar
  68. Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 28(10): 2731–2739. DOI: 10.1093/molbev/msr121PubMedCrossRefGoogle Scholar
  69. Thomas C.D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., Siqueira M.F., Grainger A., Hannah L., Hughes L., Huntley B., Jaarsveld A.S., Midgley G.F., Miles L., Ortega-Huerta M.A., Peterson A.T., Phillips O.L. & Williams S.E. 2004. Extinction risk from climate change. Nature 427(6970): 145–148. DOI: 10.1038/nature02121PubMedCrossRefGoogle Scholar
  70. Thuiller W., Lavorel S., Araujo M.B., Sykes M.T. & Prentice C. 2005. Climate change threats to plant diversty in Europe. Proc. Natl. Acad. Sci. USA 102(23): 8245–8250. DOI: 10.1073/pnas.0409902102PubMedCrossRefGoogle Scholar
  71. Ullrich B., Reinhold K., Niehuis O. & Misof B. 2010. Secondary structure and phylogenetic analysis of the internal transcribed spacers 1 and 2 of bush crickets (Orthoptera: Tettigoniidae: Barbitistini). J. Zool. Syst. Evol. Res. 48(3): 219–228. DOI: 10.1111/j.1439-0469.2009.00553.xGoogle Scholar
  72. Ünal M. 2005. Phaneropterinae (Orthoptera: Tettigoniidae) from Turkey and Middle East. Trans. Am. Entomol. Soc. 131(3–4): 425–448. DOI:10.3157/061.136.0203Google Scholar
  73. Watterson G.A. 1975. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7(2): 256–276. DOI: 10.1016/0040-5809(75)90020-9PubMedCrossRefGoogle Scholar
  74. Weir B.S. & Cockerham C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38(6): 1358–1370.CrossRefGoogle Scholar
  75. Wiens J.J. & Donoghue M.J. 2004. Historical biogeography, ecology and species richness. Trends Ecol. Evol. 19: 639–644. DOI:10.1016/j.tree.2004.09.011PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Department of Biology, Faculty of ScienceAkdeniz UniversityAntalyaTurkey
  2. 2.Department of Biology, Faculty of Art & ScienceOndokuz Mayis UniversitySamsunTurkey

Personalised recommendations