Skip to main content
Log in

Epitope selection for multipeptide proteins: the case of RNA polymerase IV and V

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Large multipeptide protein complexes have provided a challenge for epitope selection, which is required for immunological protocols where native conformations are needed. Immunolocalization requires native conformation of the proteins, which is essential for further understanding of biological activity. RNA polymerase IV and V are multisubunit proteins that interact with other factors in the RNA-directed DNA methylation pathway for control of DNA silencing by small interfering RNA and DNA methylation. DNA silencing is an important process during cell differentiation, nuclear structure and viral control among others. RNA polymerase IV and V are yet to be studied in model monocot systems like Oryza sativa, which may provide further data to define if the genetic silencing mechanism has diverged over time as compared to dicots. Here we show an in silico selection process of exposed sequences and their use for obtaining antibodies against native RNA polymerase IV and V in O. sativa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

2,4-D:

2,4-dichlorophenoxy acetic acid

DAPI:

4′,6-diamidino-2-phenylindole

Pol:

RNA polymerase

siRNA:

small interfering RNA

References

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    PubMed  CAS  Google Scholar 

  • Armache K.J., Mitterweger S., Meinhart A. & Cramer P. 2005. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J. Biol. Chem. 280: 7131–7134.

    Article  PubMed  CAS  Google Scholar 

  • Berman, H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissing H., Shindyalov I.N. & Bourne P.E. 2000. The Protein data bank. Nucleic Acids Res. 28: 235–242.

    Article  PubMed  CAS  Google Scholar 

  • Chaw S.M., Chang C.C., Chen H.L. & Li W.H. 2004. Dating the monocot-dicot divergence and the origin of core eudicots using whole chloroplast genomes. J. Mol. Evol. 58: 424–441.

    Article  PubMed  CAS  Google Scholar 

  • Cramer P., Bushnell D.A. & Kornberg R.D. 2001. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292: 1863–1876.

    Article  PubMed  CAS  Google Scholar 

  • Durán-Figueroa N. & Vielle-Calzada J.P. 2010. ARGONAUTE9-dependet silencing of transposable elements in pericentromic regions of Arabidopsis. Plant Signal Behav. 5: 1476–1479.

    Article  PubMed  Google Scholar 

  • Erhard K.F. Jr., Stonaker J.L., Parkinson S.E., Lim J.P., Hale C.J. & Hollick J.B. 2009. RNA polymerase IV functions in paramutation in Zea mays. Science 323: 1201–1205.

    Article  PubMed  CAS  Google Scholar 

  • Goujon M., McWilliam H., Li W., Valentin F., Squizzato S., Paern J. & Lopez R. 2010. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38: 695–699.

    Article  Google Scholar 

  • Hahn S. 2004. Structure and mechanism of the RNA polymerase II transcription machinery. Nat. Struct. Mol. Biol. 11: 394–403.

    Article  PubMed  CAS  Google Scholar 

  • He X.J., Hsu Y.F., Zhu S., Wierzbicki A.T., Pontes O., Pikaard C.S., Liu H.L., Wang C.S., Jin H. & Zhu J.K. 2009. An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONATURE 4- and RNA-binding protein. Cell 137: 498–508.

    Article  PubMed  CAS  Google Scholar 

  • Herr A.J., Jensen M.B., Dalmay T. & Baulcombe D.C. 2005. RNA polymerase IV directs silencing of endogenous DNA. Science 308: 118–120.

    Article  PubMed  CAS  Google Scholar 

  • Lahmy S., Bies-Etheve N. & Lagrange T. 2010. Plant-specific multisubunit RNA polymerase in gene silencing. Epigenetics 5: 4–8.

    Article  PubMed  CAS  Google Scholar 

  • Law J.A., Ausin I., Johnson L.M., Vashisht A.A., Zhu J.K., Wohlschlegel J.A. & Jacobsen S.E. 2010. A protein complex required for polymerase V transcripts and RNA-directed DNA methylation in Arabidopsis. Curr. Biol. 20: 951–956.

    Article  PubMed  CAS  Google Scholar 

  • Lindskog M., Rockberg J., Uhlen M. & Sterky F. 2005. Selection of protein epitopes for antibody production. Biotechniques 38: 723–727.

    Article  PubMed  CAS  Google Scholar 

  • Luo J. & Hall B.D. 2007. A multistep process gave rise to RNA polymerase IV of land plants. J. Mol. Evol. 64: 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A., Panchenko A.R., Shoemaker B.A., Thiessen P.A., Geer L.Y. & Bryant S.H. 2002. CDD: a database of conserved domain alignments with links to domain threedimensional structure. Nucleic Acids Res. 30: 281–283.

    Article  PubMed  CAS  Google Scholar 

  • Mariani T.S., Miyake H., Esyanti R.R. & Takeoka Y. 1998. Changes in surface structure during direct somatic embryogenesis in rice scutellum observed bt scanning electron microscopy. Plant Prod. Sci. 1: 223–231.

    Article  Google Scholar 

  • Matzke M., Kanno T., Daxinger L., Huettel B. & Matzke A.J. 2009. RNA-mediated chromatin-based silencing in plants. Curr. Opin. Cell Biol. 21: 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Olmedo-Monfil V., Duran-Figueroa N., Arteaga-Vazquez M., Demesa-Arevalo E., Autran D., Grimanelli D., Slotkin R.K., Matienssen R.A. & Vielle-Calzada J.P. 2010. Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature 464: 628–632.

    Article  PubMed  CAS  Google Scholar 

  • Onodera Y., Haag J.R., Ream T., Nunes P.C., Pontes O. & Pikaard C.S. 2005. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 120: 613–622.

    Article  PubMed  CAS  Google Scholar 

  • Pikkard C.S., Haag J.R., Ream T. & Wierzbicki A.T. 2008. Roles of RNA polymerase IV in gene silencing. Trends Plant Sci. 13: 390–397.

    Article  Google Scholar 

  • Pontes O., Costa-Nunes P., Vithayathil P. & Pikaard C.S. 2009. RNA polymerase V functions in Arabidopsis interphase heterochromatin organization independently of the 24-nt siRNAdirected DNA methylation pathway. Mol. Plant 2: 700–710.

    Article  PubMed  CAS  Google Scholar 

  • Sidorenko L., Dorweiler J.E., Cigan A.M., Arteaga-Vazquez M. Vyas M. Kermicle J., Jurcin D., Brzeski J., Cai Y. & Chandler V.L. 2009. A dominant mutation in mediator of paramutaion2, one of three second-largest subunits of a plantspecific RNA polymerase, disrupts multiple siRNA silencing processes. PLoS Genet. 5: e1000725.

    Article  PubMed  Google Scholar 

  • Stonaker J.L., Lim J.P., Erhard K.F. Jr. & Hollick J.B. 2009. Diversity of Pol IV function is defined by mutations at the maize rmr7 locus. PLoS Genet. 5: e1000706.

    Article  PubMed  Google Scholar 

  • Vaitukaitis J., Robbins J.B., Nieschlag E. & Ross G.T. 1971. A method for producing specific antisera with small doses of immunogen. J. Clin. Endocrinol. Metab. 33: 988–991.

    Article  PubMed  CAS  Google Scholar 

  • Valadez-Gonzalez N., Colli-Mull J.G., Brito-Argaez L., Munoz-Sanchez J.A., Zuniga-Aguilar J., Castano E. & Hernandez-Sotomayor S.M.T. 2007. Differential effect of aluminum on DNA synthesis and CDKA activity in two Coffea arabica cell lines. J. Plant Growth Regul. 26: 60–77.

    Article  Google Scholar 

  • Wang Y., Addess K.J., Chen J., Geer L.Y., He J., He S., Lu S., Madej T., Marchler-Bauer A., Thiessen P.A., Zhang N. & Bryant S.H., 2007. MMDB: annotating protein sequences with Entrez’s 3D-structure database. Nucleic Acids Res. 35: 298–300.

    Article  Google Scholar 

  • Wang Y., Geer L.Y., Chappey C., Kans J.A. & Bryant S.H. 2000. Cn3D: sequence and structure views for Entrez. Trends Biochem Sci. 25: 300–302.

    Article  PubMed  CAS  Google Scholar 

  • Wierzbicki A.T., Ream T.S., Haag J.R. & Pikkard C.S. 2009. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet. 41: 630–634.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Castano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Rocio Canche Moo, L., Arroyo Herrera, A., Rodriguez-Zapata, L. et al. Epitope selection for multipeptide proteins: the case of RNA polymerase IV and V. Biologia 67, 845–851 (2012). https://doi.org/10.2478/s11756-012-0085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0085-y

Key words

Profiles

  1. Luis Rodriguez-Zapata
  2. Enrique Castano