Skip to main content
Log in

The effect of chemical signal of predatory fish and water bug on the morphology and development of Elachistocleis bicolor tadpoles (Anura: Microhylidae)

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Changes in environmental conditions can induce organisms to alter their morphology, behavior and life history. Predation is an important factor in many aquatic communities and can strongly select for anti-predator responses. In the present work, we examined the responses in morphology, growth rate and development rate of Elachistocleis bicolor tadpoles raised in the presence of chemical cues from two different predators: a water bug (Belostoma elongatum) and a fish (Moenkausia dichroura). The experiment was performed in microcosm conditions. The experimental design consisted of three treatments: chemical cues from fish, cues from water bugs and a control group. Each treatment was replicated 30 times. Each container held a single larva. The main results were: (1) there were significant differences in body depth between the predator treatments (fish vs. water bug) and between the control group and the water bug treatment, (2) there were significant differences in tail depth between predator treatments (fish vs. water bug) and between the control group and the fish treatment, (3) there were no significant differences in the growth rate and developmental rate among the treatments. Our results suggest that the presence of predaceous fish and water bugs cause different effects on tadpole morphology. In the presence of water bugs, tadpoles decreased body depth, whereas in the presence of fish tadpoles increased tail depth. These responses could be related to the way in which predators capture their prey. Predator chemical cues did not have any detectable effect on the growth rate and development rate of E. bicolor tadpoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addinsoft. 2006. XLSTAT version 7. 5. for Excel interface. Addinsoft, U.K.

  • Benard M.F. 2006. Survival trade-offs between two predator induced phenotypes in Pacific treefrogs (Pseudacris regilla). Ecology 87(2): 340–346. DOI: 10.1890/05-0381

    Article  PubMed  Google Scholar 

  • Benard M.F. 2004. Predator-induced phenotypic plasticity in organisms with complex life histories. Ann. Rev. Ecol. Evol. Syst. 35: 651–673. DOI: 10.1146/annurev.ecolsys.35.021004.112426

    Article  Google Scholar 

  • Blaustein L. 1999. Oviposition site selection in response to risk of predation: evidence from aquatic habitats and consequences for population dynamics and community structure, pp. 442–456. In: Wasser S.P. (ed.), Evolutionary Theory and Processes: Modern Perspectives, Kluwer Academic Publishers, Netherlands. ISBN: 0792355180

    Google Scholar 

  • Blaustein L., Friedman F. & Fahima T. 1996. Larval Salamandra drive temporary pool community dynamics: evidence from an artificial pool experiment. Oikos 76(2): 392–402. DOI: 10.2307/3546211

    Article  Google Scholar 

  • Darlington R.B. & Smulders T.V. 2001. Problems with residuals analysis. Anim. Behav. 62: 599–602 Part 3. DOI: 10.1006/anbe.2001.1806

    Article  Google Scholar 

  • Gómez V.I. & Kehr A.I. 2011. Morphological and developmental responses of anuran larvae (Physalaemus albonotatus) to chemical cues from predators Moenkausia dichroura (Characiformes: Characidae) and Belostoma elongatum (Hemiptera: Belostomatidae). Zool. Stud. 50(2): 203–210.

    Google Scholar 

  • Gomulkiewicz R. & Kirkpatrick M. 1992. Quantitative genetics and the evolution of reaction norms. Evolution 46(2): 390–411. DOI: 10.2307/2409860

    Article  Google Scholar 

  • Gosner K.L. 1960. A simplified table for staging anurans embryos and larvae with notes of identification. Herpetologica 16(3): 183–190.

    Google Scholar 

  • Hews D.K. 1988. Alarm response in larval western toads, Bufo boreas: release of larval chemicals by a natural predator and its effect on predator capture efficiency. Anim. Behav. 36(1): 125–133. DOI: 10.1016/S0003-3472(88)80255-0

    Article  Google Scholar 

  • Holling C.S. 1964. The analysis of complex population processes. Canad. Entomol. 96(1–2): 335–347. DOI: 10.4039/Ent963-4

    Article  Google Scholar 

  • Kiesecker J.M., Chivers D.P., Anderson M. & Blaustein A.R. 2002. Effect of predator diet on life history shifts of red-legged frogs, Rana aurora. J. Chem. Ecol. 28(5): 1007–1015. DOI: 10.1023/A:1015261801900

    Article  PubMed  CAS  Google Scholar 

  • Kishida O., Mizuta Y. & Nishimura K. 2006. Reciprocal phenotypic plasticity in a predator-prey interaction between larval amphibians. Ecology 87(6): 1599–1604. DOI: 10.1890/0012-9658(2006)87[1599:RPPIAP]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Kishida O. & Nishimura K. 2005. Multiple inducible defenses against multiple predators in the anuran tadpole, Rana pirica. Evol. Ecol. Res. 7(4): 619–631.

    Google Scholar 

  • Lardner B. 2000. Morphological and life history response to predators in larvae of seven anurans. Oikos 88(1): 169–180. DOI: 10.1034/j.1600-0706.2000.880119.x

    Article  Google Scholar 

  • Laurila A., Pakkasmaa S. & Merila J. 2006. Population divergence in growth rate and antipredator defenses in Rana arvalis. Oecologia 147(4): 585–595. DOI: 10.1007/s00442-005-0301-3

    Article  PubMed  Google Scholar 

  • Laurila A., Pakkasmaa S. & Merila J. 2004. Temporal variation in predation risk: stage-dependency, graded responses and fitness costs in tadpole antipredator defenses. Oikos 107(1): 90–99. DOI: 10.1111/j.0030-1299.2004.13126.x

    Article  Google Scholar 

  • Lima S.L. & Dill L.M. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68(4): 619–640. DOI: 10.1139/z90-092

    Article  Google Scholar 

  • McCollum S.A. & Van Buskirk J. 1996. Costs and benefits of a predator-induced polyphenism in the Gray treefrog Hyla chrysoscelis. Evolution 50(2): 583–593. DOI: 10.2307/2410833

    Article  Google Scholar 

  • Moran N.A. 1992. The evolutionary maintenance of alternative phenotypes. Am. Nat. 139(5): 971–989.

    Article  Google Scholar 

  • Peacor S.D. & Werner E.E. 2004. Context dependent of nonlethal effect of a predator on prey growth. Isr. J. Zool. 50(2–3): 139–157. DOI: 10.1560/KPRR-X1C3-5NHE-QV2N

    Article  Google Scholar 

  • Relyea R.A. 2007. Getting out alive: how predators affect the decision to metamorphose. Oecologia 152(3): 389–400. DOI: 10.1007/s00442-007-0675-5

    Article  PubMed  Google Scholar 

  • Relyea R.A. 2003. Predators come and predators go: The reversibility of predator-induced traits. Ecology 84(7): 1840–1848. DOI: 10.1890/0012-9658(2003)084[1840:PCAPGT]2.0.CO;2

    Article  Google Scholar 

  • Relyea R.A. 2001a. The relationship between predation risk and antipredator responses in larval anurans. Ecology 82(2): 541–554. DOI: 10.1890/0012-9658(2001)082[0541:TRBPRA] 2.0.CO;2

    Article  Google Scholar 

  • Relyea R.A. 2001b. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82(2): 523–540. DOI: 10.1890/0012-9658(2001)082[0523: MABPOL]2.0.CO;2

    Article  Google Scholar 

  • Relyea R.A. & Werner E.E. 2000. Morphological plasticity in four larval anurans distributed along an environmental gradient. Copeia 2000(1): 178–190 DOI: 10.1643/0045-8511(2000)2000[0178:MPIFLA]2.0.CO;2)

    Article  Google Scholar 

  • Schlichting C.D. & Pigliucci M. 1998. Phenotypic Evolution: A Reaction Norm Perspective. Sinauer Associates Publishers, Sunderland, MA, 340 pp. ISBN: 0-87893-799-4

    Google Scholar 

  • Skelly D.K. 2001. Distribution of pond-breeding anurans: an overview of mechanisms. Isr. J. Zool. 47(4): 313–332. DOI: 10.1560/BVT1-LUYF-2XG6-B007

    Article  Google Scholar 

  • SPSS. 1997. SYSTAT 7.5 for Window. SPSS Inc. Chicago-USA.

  • Teplitsky C., Plénet S. & Joly P. 2003. Tadpoles responses to the risk of fish introduction. Oecologia 134(2): 270–277. DOI: 10.1007/s00442-002-1106-2

    PubMed  CAS  Google Scholar 

  • Teplitsky C., Plénet S. & Joly P. 2004. Hierarchical responses to tadpoles to multiple predators. Ecology 85(10): 2888–2894. DOI: 10.1890/03-3043

    Article  Google Scholar 

  • Teplitsky C., Plénet S., Lena J.P., Mermet N., Malet E. & Joly P. 2005. Escape behavior and ultimate causes of specific induces defenses in an anuran tadpole. J. Evol. Biol. 18(1): 180–190. DOI: 10.1111/j.1420-9101.2004.00790.x

    Article  PubMed  CAS  Google Scholar 

  • Tollrian R. & Harvell D. (eds) 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, NJ, 383 pp. ISBN: 0691004943, 9780691004945

    Google Scholar 

  • Van Buskirk J. 2000. The cost of an inducible defense in anuran larvae. Ecology 81(10): 2813–2821. DOI: 10.1890/0012-9658(2000)081[2813:TCOAID]2.0.CO;2

    Article  Google Scholar 

  • Van Buskirk J. 2001. Specific induced responses to different predator species in anuran larvae. J. Evol. Biol. 14: 482–489. DOI: 10.1046/j.1420-9101.2001.00282.x

    Article  Google Scholar 

  • Van Buskirk J. 2002. Phenotypic lability and the evolution of predator-induced plasticity in tadpoles. Evolution 56(2): 361–370. PMID: 11926504

    PubMed  Google Scholar 

  • Van Buskirk J., McCollum S.A. & Werner E.E. 1997. Natural selection for environmentally induced phenotypes in tadpoles. Evolution 51(6): 1983–1992.

    Article  Google Scholar 

  • Van Buskirk J. & Relyea R.A. 1998. Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biol. J. Linn. Soc. 65(3): 301–328. DOI: 10.1111/j.1095-8312.1998.tb01144.x

    Article  Google Scholar 

  • Wassersug R.J. 1989 Locomotion in amphibian larvae (or “Why aren’t tadpoles built like fishes?”). Amer. Zool. 29(1): 65–84. DOI: 10.1093/icb/29.1.65

    Google Scholar 

  • Werner E.E. 1986. Amphibian metamorphosis: growth rate, predation risk, and optimal size at transformation. Am. Nat. 128(3): 319–341.

    Article  Google Scholar 

  • Werner E.E. & McPeek M.A. 1994. Direct and indirect effect of predators on two anuran species along an environmental gradient. Ecology 75(5): 1368–1382. DOI: 10.2307/1937461

    Article  Google Scholar 

  • Wilbur H.M. 1997. Experimental ecology of food webs: complex systems in temporary ponds. Ecology 78(8): 2279–2302. DOI: 10.1890/0012-9658(1997)078[2279:EEOFWC]2.0.CO;2

    Article  Google Scholar 

  • Williams J.D. & Gudynas E. 1987. Descripción de la larva de Elachistocleis bicolor (Valenciennes 1838) (Anura: Microhylidae). Amphibia-Reptilia 8(3): 225–229. DOI: 10.1163/156853887X00261

    Article  Google Scholar 

  • Wojdak J.M. & Trexler D.C. 2010. The influence of temporally variable predation risk on indirect interactions in an aquatic food chain. Ecol. Res. 25(2): 327–335. DOI: 10.1007/s11284-009-0664-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria I. Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, V.I., Kehr, A.I. The effect of chemical signal of predatory fish and water bug on the morphology and development of Elachistocleis bicolor tadpoles (Anura: Microhylidae). Biologia 67, 1001–1006 (2012). https://doi.org/10.2478/s11756-012-0082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0082-1

Key words

Navigation