Skip to main content
Log in

Genetic variation and species identification among selected leeches (Hirudinea) revealed by RAPD markers

  • Full Paper
  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Leech taxonomy is based on unstable morphological characters. The overall level of genetic variability and species differentiation is unknown. Using the RAPD assays genetic diversities and genetic similarities were estimated in twelve species collected in North-Eastern Poland and representing three families and five subfamilies. Ten primers revealed 204 reproducible bands. Genetic diversities varied from 0.099 to 0.219 classifying studied species among variable invertebrates. Total 45 markers comprised 22% of all amplified bands were unique for species thus enabling their identification. Genetic similarities among species (0.528–0.811) evidenced several stages of differentiation, which is mirrored in the current taxonomy. The UPGMA and multidimensional scaling (nMDS) based on our RAPDs are congruent and reflected traditional division into “Rhynchobdellida” and Arhynchobdellida. The RAPD approach proved to be an effective tool in population and evolutionary studies of leeches. For the first time, genetic parameters were estimated enabling to compare leeches with outcomes from other animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams R.P. & Rieseberg L.H. 1998. The effects of non-homology in RAPD bands on similarity and multivariate statistical ordination in Brassica and Helianthus. Theor. Appl. Genet. 97(2): 323–326. DOI: 10.1007/s001220050902

    Article  CAS  Google Scholar 

  • Apakupakul K., Siddall M.E. & Burreson E.M. 1999. Higher level relationships of leeches (Annelida: Clitellata: Euhirudinea) based on morphology and gene sequences. Mol. Phylogenet. Evol. 12: 350–359. DOI: 10.1006/mpev.1999.0639

    Article  PubMed  CAS  Google Scholar 

  • Avise J.C. 2004. Molecular Markers, Natural History, and Evolution. 2nd Edition. Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts, 684 pp. ISBN-10: 0878930418, ISBN-13: 978-0878930418

    Google Scholar 

  • Baczkiewicz A., Sawicki J., Buczkowska K., Polok K. & Zielinski R. 2008. Application of different DNA markers in studies on cryptic species of Aneura pinguis (Jungermannipsida, Metzgeriales). Cryptogamie Bryol. 29: 3–21.

    Google Scholar 

  • Bely A.E. & Weisblat D.A. 2006. Lessons from leeches: a call for DNA barcoding in the lab. Evol. Dev. 8(6): 491–501. PMID: 17073933

    Article  PubMed  Google Scholar 

  • Boulila A., Bejaoui A., Messaoud C. & Boussaid M. 2010. Genetic diversity and population structure of Teucrium polium (Lamiaceae) in Tunisia. Biochem. Genet. 48(1–2): 57–70. DOI: 10.1007/s10528-009-9295-6

    Article  PubMed  CAS  Google Scholar 

  • Cichocka J. & Bielecki A. 2008. Biological diversity of leeches (Clitellata: Hirudinida) based on the characteristics of the karyotypes. Wiad. Parazytol. 54(4): 309–314. PMID: 19338221

    PubMed  Google Scholar 

  • Dyer A.R., Fowler J.C.S. & Baker G.H. 1998. Detecting genetic variation in exotic eartworms, Aporrectodea spp. (Lumbricidae), in Australian soils using RAPD markers. Soil Biol. Biochem. 30(2): 159–165. DOI: 10.1016/S0038-0717(97)00098-9

    Article  CAS  Google Scholar 

  • Govedich F.R., Blinn D.W., Hevly R.H. & Keim P.S. 1999. Cryptic radiation in erpobdellid leeches in xeric landscapes: a molecular analysis of population differentiation. Can. J. Zool. 77(1): 52–57. DOI: 10.1139/z98-178

    Article  Google Scholar 

  • Integrated Taxonomic Information System [database on the Internet]. [modified 2009 Dec 24: cited 2010 May 28]. Available from: http://www.itis.gov

  • Krebs C., Mahy G., Matthies D., Schaffner U., Tiebre M.S. & Bizoux J.P. 2010. Taxa distribution and RAPD markers indicated different origin and regional differentiation of hybrids in the invasive Fallopia complex in central-western Europe. Plant Biol. 12(1): 215–223. DOI: 10.1111/j.1438-8677.2009.00219.x

    Article  PubMed  CAS  Google Scholar 

  • Liu Y.G., Chen S.L. & Li B.F. 2007. Genetic differentiation among common and selected hatchery populations of flounder: evidence from RAPD. Biochem. Syst. Ecol. 35(10): 689–695. DOI: 10.1016/j.bse.2007.04.012

    Article  CAS  Google Scholar 

  • Milner M., Bansode A.G., Lawrence A.L., Nevagi S.A., Patwardhan V. & Modak S.P. 2004. Molecular phylogeny in 3-D. Curr. Issues Mol. Biol. 6(2): 189–200. PMID: 15119827

    PubMed  CAS  Google Scholar 

  • Morse A.M., Peterson D.G., Islam-Faridi M.N., Smith K.E., Magbanua Z., Garcia S., Kubisiak T.L., Amerson H.V. et al. 2009. Evolution of genome size and complexity in Pinus. PLoSONE 4(2): e4332. DOI: 10.1371.journal.pone.0004332

    Google Scholar 

  • Nei M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, Guildford, Surrey, 512 pp. ISBN: 0231063210, 9780231063210

    Google Scholar 

  • Nei M. & Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York, 333 pp. ISBN-10: 0195135857, ISBN-13: 978-0195135855

    Google Scholar 

  • Nybom H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13(5): 1143–1155. DOI: 10.1111/j.1365-294X.2004.02141.x

    Article  PubMed  CAS  Google Scholar 

  • Obornik M., Klic M. & Zozka L. 2000. Genetic variability and phylogeny inferred from random amplified polymorphic DNA data reflect life strategy of enthopathogenic fungi. Can J. Bot. 78(9): 1150–1155. DOI: 10.1139/cjb-78-9-1150

    CAS  Google Scholar 

  • Oliver K.R. & Greene W.K. 2009. Transposable elements: powerful facilitators of evolution. BioEssays 31(7): 703–714. DOI: 10.1002/bies.200800219

    Article  PubMed  CAS  Google Scholar 

  • Pélé J., Abdi H., Moreau M., Thybert D. & Chabbert M. 2011. Multidimensional scaling reveals the main evolutionary pathways of class A G-protein-coupled receptors. PLoS ONE 6(4): e19094. DOI: 10.1371/journal.pone.0019094

    Article  PubMed  Google Scholar 

  • Pfeiffer I., Brening B. & Kutschera U. 2005. Molecular phylogeny of selected predaceous leeches with reference to the evolution of body size and terrestrialism. Theor. Biosci. 124(1): 55–64. DOI: 10.1016/j.thbio.2005.05.002

    Article  CAS  Google Scholar 

  • Polok K. 2007. Molecular Evolution of the Genus Lolium L. Studio Poligrafii Komputerowej “SQL”, Olsztyn, 317 pp. ISBN: 8388125524, 9788388125522

    Google Scholar 

  • Polok K., Sawicki J., Kubiak K., Szczecińska M., Korzekwa K., Szandar K. & Zielinski R. 2005a. Evolutionary divergence within Pellia endiviifolia (Dicks.) Dum. from Poland, pp. 241–252. In: Prus-Głowacki W. & Pawlaczyk M.E. (eds), Variability and Evolution: New Perspectives, Wydawnictwo Naukowe UAM, Poznan, 562 pp. ISBN: 83-232-1599-5

  • Polok K., Urbaniak L., Korzekwa K., Androsiuk P., Ciągło S., Kubiak K. & Zielinski R. 2005b. Genetic similarity of Pinus sylvestris populations on the base of DNA markers, pp. 253–267. In: Prus-Glowacki W. & Pawlaczyk E. (eds), Variability and Evolution: New Perspectives, Wydawnictwo Naukowe UAM, Poznan, 562 pp. ISBN: 83-232-1599-5

  • Polok K. & Zielinski R. 2011. Mutagenic treatment induces high transposon variation in barley (Hordeum vulgare L.). Acta Agr. Slov. 97(3): 179–188. DOI: 10.2478/v10014-011-0012-x

    CAS  Google Scholar 

  • Siddall M.E. 2002. Phylogeny of the leech family Erpobdellidae (Hirudinida: Oligochaeta). Invertebr. Syst. 16: 1–6. DOI: 10.1071/IT01011

    Article  Google Scholar 

  • Siddall M.E, Budinoff R.B. & Borda E. 2005. Phylogenetic evaluation of systematics and biogeography of the leech family Glossiphoniidae. Invertebr. Syst. 19(2): 105–112. DOI: 10.1071/IS04034

    Article  Google Scholar 

  • Siddall M.E., Min G.-S., Fontanella F.M., Phillips A.J. & Watson S.C. 2011. Bacterial symbiont and salivary peptide evolution in the context of leech phylogeny. Parasitology 138(13): 1815–1827. DOI: 10.1017/S0031182011000539

    Article  PubMed  Google Scholar 

  • Sket B. & Trontelj P. 2008. Global diversity of leeches (Hirudinea) in freshwater. Hydrobiologia 595(1): 129–137. DOI: 10.1007/s10750-007-9010-8

    Article  Google Scholar 

  • Sole-Cava A.M. & Thorpe J.P. 1991. High levels of genetic variation in natural populations of marine lower invertebrates. Biol. J. Linn. Soc. 44(1): 65–80. DOI: 10.1111/j.1095-8312.1991.tb00607.x

    Article  Google Scholar 

  • Spiridonova L.N., Korobitsyna K.V., Yakimenko L.V. & Bogdanov A.S. 2008. Genetic differentiation of subspecies of the house mouse Mus musculus and their taxonomic relationships inferred from RAPD-PCR data. Russ. J. Genet. 44(6): 732–739. DOI: 10.1134/S1022795408060148

    Article  CAS  Google Scholar 

  • Szczecinska M., Sawicki J., Polok K., Holdynski Cz. & Zielinski R. 2006. Comparison of three Polygonatum species from Poland based on DNA markers. Ann. Bot. Fenn. 45: 379–388.

    Google Scholar 

  • Trontelj P., Sotler M. & Verovnik R. 2004. Genetic differentiation between two species of the medicinal leech, Hirudo medicinalis and the neglected H. verbena, based on randomamplified polymorphic DNA. Parasitol. Res. 94(2): 118–124. DOI: 10.1007/s00436-004-1181-x

    PubMed  Google Scholar 

  • Utevsky S., Kovalenko N., Doroshenko K., Petrauskiene L. & Klymenko V. 2009. Chromosome numbers for three species of medicinal leeches (Hirudo spp.). Syst. Parasitol. 74(2): 95–102. DOI: 10.1007/s11230-009-9198-2

    Article  PubMed  Google Scholar 

  • Verovnik R., Trontelj P. & Sket B. 1999. Genetic differentiation and species status within the snail leech Glossiphonia complanata aggregate (Hirudinea: Glossiphoniidae) revealed by RAPD analysis. Arch. Hydrobiol. 144(3): 327–338.

    Google Scholar 

  • Williams J.I. & Burreson E.M. 2006. Phylogeny of the fish leeches (Oligochaeta, Hirudinida, Piscicolidae) based on nuclear and mitochondrial genes and morphology. Zool. Scr. 35(6): 627–639. DOI: 10.1111/j.1463-6409.2006.00246.x

    Article  Google Scholar 

  • Wong C.L., Ng S.M. & Phang S.M. 2007. Use of RAPD in differentiation of selected species of Sargassum (Sargassaceae, Phaeophyta). J. Appl. Phycol. 19(6): 771–781. DOI: 10.1007/s10811-007-9236-x

    Article  CAS  Google Scholar 

  • Yeh F.C., Yang R.C., Boyle T.B.J., Ye Z.H. & Mao J.X. 2000. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada. http://www.ualberta.ca/?fyeh/index.htm http://www.ualberta.ca/?fyeh/popgene.html

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Bielecki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bielecki, A., Polok, K. Genetic variation and species identification among selected leeches (Hirudinea) revealed by RAPD markers. Biologia 67, 721–730 (2012). https://doi.org/10.2478/s11756-012-0063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0063-4

Key words

Navigation