Skip to main content

Different nutrient use strategies of expansive grasses Calamagrostis epigejos and Arrhenatherum elatius

Abstract

Enhanced nitrogen (N) levels accelerate expansion of Calamagrostis epigejos and Arrhenatherum elatius, highly aggressive expanders displacing original dry acidophilous grassland vegetation in the Podyjí National Park (Czech Republic). We compared the capability of Calamagrostis and Arrhenatherum under control and N enhanced treatments to (i) accumulate N and phosphorus (P) in plant tissues, (ii) remove N and P from above-ground biomass during senescence and (iii) release N and P from plant material during decomposition of fresh formed litter. In control treatment, significantly higher amounts of total biomass and fresh aboveground litter were observed in Calamagrostis than in Arrhenatherum. Contrariwise, nutrient concentrations were significantly higher (11.6–14.3 mg N g−1 and 2.3 mg P g−1) in Arrhenatherum peak aboveground biomass than in Calamagrostis (8.4–10.3 mg N g−1 and 1.6–1.7 mg P g−1). Substantial differences between species were found in resorption of nutrients, mainly P, at the ends of growing seasons. While P concentrations in Arrhenatherum fresh litter were twice and three times higher (1.6–2.5 mg P g−1) than in Calamagrostis (0.7–0.8 mg P g−1), N concentrations were nearly doubled in Arrhenatherum (13.1–15.6 mg N g−1) in comparison with Calamagrostis (7.4–8.7 mg N g−1). Thus, the nutrients (N and mainly P) were retranslocated from the aboveground biomass of Calamagrostis probably more effectively in comparison with Arrhenatherum at the end of the growing season. On the other hand, Arrhenatherum litter was decomposed faster and consequently nutrient release (mainly N and P) was higher in comparison with Calamagrostis which pointed to different growth and nutrient use strategies of studied grass species.

This is a preview of subscription content, access via your institution.

References

  • Aerts R. 1989. Nitrogen use efficiency in relation to nitrogen availability and plant community composition, pp. 285–297. In: Lambers H., Cambridge M.L., Konings H. & Pons T.L. (eds), Causes and consequences of variation in growth rate and productivity of higher plants, SPB Academic Publishing, The Hague.

    Google Scholar 

  • Aerts R. 1996. Nutrient resorption from senescing leaves of perennials: are there general patterns? J. Ecol. 84: 597–608.

    Article  Google Scholar 

  • Aerts R. & Chapin F.S. III 2000. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv. Ecol. Res. 30: 1–67.

    Article  CAS  Google Scholar 

  • Balestrini R., Galli L. & Tartari G. 2000. Wet and dry atmospheric deposition at prealpine and alpine sites in northern Italy. Atm. Envir. 34: 1455–1470.

    Article  CAS  Google Scholar 

  • Berendse F., Berg B. & Bosatta E. 1987. The effect of lignin and nitrogen on the decomposition of litter in nutrien-poor ecosystems: a theoretical approach. Can. J. Bot. 65: 1116–1120.

    Article  CAS  Google Scholar 

  • Bobbink R., Hornung M. & Roelofs J.G.M. 1998. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J. Ecol. 86: 717–738.

    Article  CAS  Google Scholar 

  • Bobbink R. & Willems J.H. 1988. Effects of management and nutrient availability on vegetation structure of chalk grassland, pp. 183–193. In: During H.J., Werger M.J.A. & Willems J.H. (eds), Diversity and Pattern in Plant Communities, SPB Academic Publishing, The Hague.

    Google Scholar 

  • Bobbink R. & Roelofs J.G.M. 1995. Nitrogen critical loads for natural and semi-natural ecosystems: the empirical approach. Water Air Soil Pollut. 85: 2413–2418.

    Article  CAS  Google Scholar 

  • Brünn S. 1999. Untersuchungen zum Mineralstoffhaushalt von Calamagrostis epigejos (L.) Roth in stickstoffbelasteten Kieferwäldern. Berichte des Forschungszentrums Waldökosysteme, Reihe A, Bd. 160, Universität Göttingen, Göttingen.

    Google Scholar 

  • Day F.P. 1982. Litter decomposition rates in the seasonally flooded Great Dismal Swamp. Ecology 63: 670–678.

    Article  CAS  Google Scholar 

  • Emmer I.M. 1997. Field monitoring of litter decomposition, soil nitrogen dynamics and soil temperatures (1995–1996). Report of ICG University Amsterodam, Amsterodam, 20 pp.

    Google Scholar 

  • Eugster W., Perego S., Wanner H., Leuenberger A., Liechti M., Reinhardt M., Geissbuhler P., Gempeler M. & Schenk J. 1998. Spatial variation in annual nitrogen deposition in a rural region in Switzerland. Environ. Pollut. 102: 327–335.

    Article  CAS  Google Scholar 

  • Fabšičováková I., Holub P., Tůma I., Chytrý M. & Záhora J. 2003. Nitrogen dynamics and expansion of the Arrhenatherum elatius in heathlands in the Podyjí Thaya River Basin National Park, pp. 255–263. In: Pivničková M. (ed.), Nature — supplementum, Agency for Nature Conservation and Landscape Protection of the CR, Prague

    Google Scholar 

  • Fanta J. 1997. Rehabilitating degraded forests in Central Europe into self-sustaining forest ecosystems. Ecol. Eng. 8: 289–297.

    Article  Google Scholar 

  • Fiala K., Holub P., Sedláková I., Tůma I., Záhora J. & Tesařová M. 2003. Reasons and consequences of expansion of Calamagrostis epigejos in alluvial meadows of landscape affected by water control measures — a multidisciplinary research. Ekológia, Bratislava 22: 242–252.

    Google Scholar 

  • Fiala K., Tůma I. & Holub P. 2011. Effect of nitrogen addition and drought on above-ground biomass of expanding tall grasses Calamagrostis epigejos and Arrhenatherum elatius. Biologia 66: 275–281.

    Article  Google Scholar 

  • Fiala K., Záhora J., Tůma I. & Holub P. 2004. Importance of plant matter accumulation, nitrogen uptake and utilization in expansion of tall grasses (Calamagrostis epigejos and Arrhenatherum elatius) into an acidophilous dry grassland. Ekológia, Bratislava 23: 225–240.

    Google Scholar 

  • Grime J.P., Hodgson J.G. & Hunt R. 1988. Comparative Plant Ecology: A Functional Approach to Common British Species. Allen & Unwin, London.

    Google Scholar 

  • Holub P. & Záhora J. 2008. Effects of nitrogen addition on nitrogen mineralization and nutrient content of expanding Calamagrostis epigejos in the Podyjí National Park, Czech Republic. J. Plant Nutr. Soil Sci. 171: 795–803.

    Article  CAS  Google Scholar 

  • Hůnová I., Šantroch J. & Ostatnická J. 2004. Ambient air quality and deposition trends at rural stations in the Czech Republic during 1993–2001. Atmos. Environ. 38: 887–898.

    Article  Google Scholar 

  • Kao J.T., Titus J.E. & Zhu W.X. 2003. Differential nitrogen and phosphorus retention by five wetland plant species. Wetlands 23: 979–987.

    Article  Google Scholar 

  • Kučera T. & Šumberová K. 2010. T1 Louky a pastviny, pp. 65–89. In: Chytrý M., Kučera T., Kočí M., Grulich V. & Lustyk P. (eds), Katalog biotopů České republiky. Ed. 2, Agentura ochrany přírody a krajiny ČR, Praha.

    Google Scholar 

  • Květ J. 1993. Ecological crisis in post-communist Central Europe. J. Aquat. Plant. Manag. 31: 13–17.

    Google Scholar 

  • Liancourt P., Viard-Creatat F. & Michalet R. 2009. Contrasting community responses to fertilization and the role of the competitive ability of dominant species. J. Veg. Sci. 20: 138–147.

    Article  Google Scholar 

  • Pfitzenmeyer C.D.C. 1962. Biological flora of the British Isles: Arrhenatherum elatius (L.)J & C. Presl. J. Ecol. 50: 235–245.

    Article  Google Scholar 

  • Prach K. & Pyšek P. 1999. How do species dominating in succession differ from others? J. Veg. Sci. 10: 383–392.

    Article  Google Scholar 

  • Pyšek P., Prach K. & Šmilauer P. 1995. Invasion success related to plant traits: an analysis of Czech alien flora, pp. 39–60. In: Pyšek P., Prach K., Rejmánek M. & Wade P. (eds), Plant invasions: general aspects and special problems, SPB Academic Publishing, Amsterdam.

    Google Scholar 

  • Rebele F. 2000. Competition and coexistence of rhizomatous perennial plants along a nutrient gradient. Plant Ecol. 147: 77–94.

    Article  Google Scholar 

  • Rebele F. & Lehmann C. 2001. Biological flora of Central Europe: Calamagrostis epigejos (L.) Roth. Flora 196: 325–344.

    Google Scholar 

  • Rees R.M., Bingham I.J., Baddeley J.A. & Watson C.A. 2005. The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems. Geoderma 128: 130–154.

    Article  CAS  Google Scholar 

  • Sedláková I. & Fiala K. 2001. Ecological problems of degradation of alluvial meadows due to expanding Calamagrostis epigejos. Ekológia, Bratislava 20,Suppl. 3: 226–233.

    Google Scholar 

  • Sedláková I. & Chytrý M. 1999. Regeneration patterns in a Central European dry heathland: effects of burning, sod-cutting and cutting. Plant Ecol. 143: 77–87.

    Article  Google Scholar 

  • Skládanka J., Adam V., Ryant P., Doležal P. & Havlíček Z. 2010. Can Festulolium, Dactylis glomerata and Arrhenatherum elatius be used for extension of the autumn grazing seasonin Central Europe? Plant Soil Environ. 56: 488–498

    Google Scholar 

  • Süss K., Storm C., Zehm A. & Schwabe A. 2004. Succession in inland sand ecosystems: Which factors determine the occurrence of the tall grass species Calamagrostis epigejos (L.) Roth and Stipa capillata L.? Plant Biol. 6: 465–476.

    PubMed  Article  Google Scholar 

  • ten Harkel M.J. & van der Meulen F. 1996. Impact of grazing and atmospheric nitrogen deposition on the vegetation of dry coastal dune grasslands. J. Veg. Sci. 7: 445–452

    Article  Google Scholar 

  • Ter Heerdt G.N.J., Bakker J.P. & de Leeuw J. 1991. Seasonal and spatial variation in living and dead plant material in a grazed grassland as related to plant species diversity. J. Appl. Ecol. 28: 120–127.

    Article  Google Scholar 

  • Tesařová M. 1993. Micro-organisms in grassland ecosystems, pp. 245–264. In: Rychnovská M. (ed), Structure and functioning of seminatural meadows, Praha.

    Google Scholar 

  • Tilman D. 1982. Resource competition and community structure. Princeton University Press, Princeton, UK.

    Google Scholar 

  • Tilman D. 1997. Mechanisms of plant competition, pp. 239–261. In: Crawley M.J. (ed.), Plant Ecology, Blackwell Science, Oxford, UK.

    Google Scholar 

  • Tůma I. 2002. Release of nutrients from decomposing grass litter on deforested areas affected by air pollution in the Beskydy Mts. Ekol. Bratislava 21: 201–220.

    Google Scholar 

  • Tůma I., Holub P. & Fiala K. 2005. Competitive balance and nitrogen losses from three grass species (Arrhenatherum elatius, Calamagrostis epigejos, Festuca ovina). Biologia 60: 417–422.

    Google Scholar 

  • van den Berg L.J.L., Tomassen H.B.M., Roelofs J.G.M. & Bobbink R. 2005. Effects of nitrogen enrichment on coastal dune grassland: A mesocosm study. Environ. Pollut. 138: 77–85.

    PubMed  Article  Google Scholar 

  • van der Krift T.A.J., Gioacchini P., Kuikman P.J. & Berendse F. 2001. Effects of high and low fertility plant species on dead root decomposition and nitrogen mineralization. Soil Biol. Biochem. 33: 2115–2124.

    Article  Google Scholar 

  • Vitousek P.M. & Howarth R.W. 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13: 87–115.

    Article  Google Scholar 

  • Wiegert R.G. & Ewans F.C. 1964. Primary production + disappearance of dead vegetation on old field in Southeastern Michigan. Ecology 45: 49–63.

    Article  Google Scholar 

  • Wilson M.V. & Clark D.L. 2001. Controlling invasive Arrhenatherum elatius and promoting native prairie grasses through mowing. Appl. Veg. Sci. 4: 129–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Holub.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holub, P., Tůma, I., Záhora, J. et al. Different nutrient use strategies of expansive grasses Calamagrostis epigejos and Arrhenatherum elatius . Biologia 67, 673–680 (2012). https://doi.org/10.2478/s11756-012-0050-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0050-9

Key words

  • competition
  • decomposition
  • dry grassland
  • fertilization
  • N:P ratio
  • tissue nutrient concentration