Skip to main content
Log in

Differential expression of gibberellin 20 oxidase gene induced by abiotic stresses in Zoysiagrass (Zoysia japonica)

  • Full Paper
  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The gibberellin 20-oxidase gene (GA20) plays an important role in plant growth and development. Differential expression of Zoysiagrass (Zoysia japonica Steud.) gibberellin 20 oxidase gene (ZjGA20) induced by abiotic stresses has not been reported. In this investigation, we first reported the differential expression of ZjGA20 in different Z. japonica tissues including root, young leaf, senescent leaf, blade, sheath, and stolon, as well as differential expression induced by abiotic stresses including low temperature (4°C), H2O2(8 μM), salt stress (250 mM NaCl), 25% PEG6000, and high temperature (42°C) by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). Higher expression of ZjGA20 was observed in young leaf and sheath, compared to root, senescent leaf, blade, and stolon. Among different abiotic stresses, expression of ZjGA20 decreased under low temperature, 25% PEG6000, and high temperature. The highest expression of ZjGA20 was obtained when plants were treated with 8 μM H2O2 for 10 h and with 250 mM NaCl for 5 h. The analysis of the MDA content, POD activity, and permeability of the plasma membrane demonstrated that application of exogenous GA3 recovered tissue damage derived from low temperature treatment. In addition, the expression of ZjGA20 increased under low temperature stress. These results demonstrated that expression of ZjGA20 was regulated by abiotic stresses and the damage derived from abiotic stresses could be rescued by exogenously applied plant growth regulator GA3. Further more, exogenous gibberellin and salicylic acid (SA) alleviated the growth inhibition and death of the seedlings under stresses. The SA content in the seedlings treated with 80 μM GA3 was far greater than the control (with H2O) and plants under stress treatments. These data suggest that exogenous addition of GA3 is able to counteract the inhibitory effects of these adverse environmental conditions in Zoysiagrass growth through modulation of SA biosynthesis. This is the first study of differential expression of gibberellin 20 oxidase gene and growth regulation of GA3 in Zoysiagrass under stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

GA20:

gibberellin 20-oxidase gene

SA:

salicylic acid

RT-PCR:

Reverse Transcriptase-Polymerase Chain Reaction

MDA:

malondialdehyde

POD:

peroxidase

References

  • Alonso-Ramírez A., Rodríguez D., Reyes D., Jiménez J.A., Nicolás G., López-Climent M., Gómez-Cadenas A. & Nicolás C. 2009. Evidence for a role of gibberellins in salicylic acid modulated early plant responses to abiotic stress in Arabidopsis thaliana seeds. Plant Physiology Preview. DOI:10.1104/pp.109.139352

  • Bhaskaran S., Smith R.H. & Frederiksen R.A. 1990. Gibberellin A3 reverts floral primordia to vegetative growth in sorghum. Plant Sci. 71: 113–118.

    Article  CAS  Google Scholar 

  • Carrera E., Bou J., Garcia-Martinez J.L. & Prat S. 2000. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants. Plant J. 22: 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Chen I.C., Lee S.C., Pan S.M. & Hsieh H.L. 2007. GASA4, a GAstimulated gene, participates in light signaling in Arabidopsis. Plant Sci. 172: 1062–1071.

    Article  CAS  Google Scholar 

  • Cong L., Zheng H.C., Zhang Y.X. & Chai T.Y. 2008. Arabidopsis DREB1A confers high salinity tolerance and regulates the expression of GA dioxygenases in tobacco. Plant Sci. 174: 156–164.

    Article  CAS  Google Scholar 

  • Durgbanshi A., Arbona V., Pozo O., Miersch O., Sancho J.V. & Gómez-Cadenas A. 2005. Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J. Agric. Food Chem. 53: 8437–8442.

    Article  PubMed  CAS  Google Scholar 

  • Eriksson M.E. & Moritz T. 2002. Daylength and spatial expression of a gibberellin 20-oxidase isolated from hybrid aspen (Populus tremula L. × P. tremuloides Michx.). Planta 214: 920–930.

    Article  PubMed  CAS  Google Scholar 

  • Ensminger I., Busch F. & Huner N.P.A. 2006. Photostasis and cold acclimation:sensing low temperature through photosynthesis. Physiol. Plant. 126: 28–44.

    Article  CAS  Google Scholar 

  • Frisse A., Pimenta M.J. & Lange T. 2003. Expression studies of gibberellin oxidases in developing pumpkin seeds. Plant Physiol. 131: 1220–1227.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A. & Tanaka Y. 2006. Effects of ABA, auxin, and gibberellin on the expression of genes for vacuolar H+-inorganic pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter in barley. Plant Physiol. Biochem. 44: 351–358.

    Article  PubMed  CAS  Google Scholar 

  • Gallego-Giraldo L., Ubeda-Tomas S., Gisbert C., Garcia-Martinez J.L., Moritz T. & Lopez-Diaz I. 2008. Gibberellin homeostasis in tobacco is regulated by gibberellin metabolism genes with different gibberellin sensitivity. Plant Cell Physiol. 49: 679–690.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Martinez J.L., Lopez-Diaz I., Sanchez-Beltran M.J., Phillips A.L., Ward D.A., Gaskin P. & Hedden P. 1997. Isolation and transcript analysis of gibberellin 20-oxidase genes in pea and bean in relation to fruit development. Plant Mol. Biol. 33: 1073–1084.

    Article  PubMed  CAS  Google Scholar 

  • Goldman S., Mawal Y.R., Tanida I. & Wu R. 1994. Studies of a gibberellin-dependent DNA-binding protein related to the expression of a rice α-amylase gene. Plant Sci. 99: 75–88.

    Article  CAS  Google Scholar 

  • Gong P.B. 2001. Principles and techniques of plant physiological biochemical experiment, Beijing, China, pp. 164–165.

  • González M.C. & Ceju F.J. 2007. Gibberellin-regulated expression of neutral and vacuolar invertase genes in petioles of sugar beet plants. Plant Sci. 172: 839–846.

    Article  Google Scholar 

  • Gu D., Liu X., Wang M., Zheng J., Hou W., Wang G. & Wang J. 2008. Overexpression of ZmOPR1 in Arabidopsis enhanced the tolerance to osmotic and salt stress during seed germination. Plant Sci. 174: 124–130.

    Article  CAS  Google Scholar 

  • Huang S., Anuradha S.R., Ream J.E., Fujiwara H., Cerny R.E. & Brown S.M. 1998. Overexpression of 20-oxidase confers a gibberellin-overproduction phenotype in Arabidopsis. Plant Physiol. 118: 773–781.

    Article  PubMed  CAS  Google Scholar 

  • Kim J.K., Chang M.C., Nahm B.H., Hwang Y.S. & Wu R. 1995. Isolation and characterization of a gibberellin-stimulated rice (Oryza sativa L.) gene encoding a protein that resembles a tumor suppressor. Plant Sci. 112: 75–84.

    Article  CAS  Google Scholar 

  • Kusaba S., Fukumoto M., Honda C., Yamaguchi I., Sakamoto T. & Kano-Murakami Y. 1998. Decreased GA1 content caused by the overexpression of OSH1 is accompanied by suppression of GA 20-oxidase gene expression. Plant Physiol. 117: 1179–1184.

    Article  PubMed  CAS  Google Scholar 

  • Kusaba S., Honda C. & Kano-Murakami Y. 2001. Isolation and expression analysis of gibberellin 20-oxidase homologous gene in apple. J. Exp. Bot. 52: 375–376.

    Article  PubMed  CAS  Google Scholar 

  • Lange T., Kappler J., Fischer A., Frisse A., Padeffke T., Schmidtke S. & Lange M.J. 2005. Gibberellin biosynthesis in developing pumpkin seedlings. Plant Physiol. 139: 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Lee D.J. & Zeevaart J.A. 2007. Regulation of gibberellin 20-oxidase1 expression in spinach by photoperiod. Planta 226: 35–44.

    Article  PubMed  CAS  Google Scholar 

  • Martin D.N., Proebsting W.M., Parks T.D., Dougherty W.G., Lange T., Lewis M.J., Gaskin P. & Hedden P 1996. Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L. Planta 200: 159–166.

    Article  PubMed  CAS  Google Scholar 

  • Nanjo Y., Asatsuma S., Itoh K., Hori H., Mitsui T. & Fujisawa Y. 2004. Posttranscriptional regulation of α-amylase II-4 expression by gibberellin in germinating rice seeds. Plant Physiol. Biochem. 42: 477–484.

    Article  PubMed  CAS  Google Scholar 

  • Olszewski N., Sun T.P. & Gubler F. 2002. Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell. 14: S61–S80.

    PubMed  CAS  Google Scholar 

  • Oka M., Tasaka Y., Iwabuchi M. & Mino M. 2001. Elevated sensitivity to gibberellin by vernalization in the vegetative rosette plants of Eustoma grandiflorum and Arabidopsis thaliana. Plant Sci. 160: 1237–1245.

    Article  PubMed  CAS  Google Scholar 

  • Phillips A.L. 1998. Gibberellins inArabidopsis. Plant Physiol. Biochem. 36: 115–124.

    Article  CAS  Google Scholar 

  • Rebers M., Kaneta T., Kawaide H., Yamaguchi S., Yang Y.Y., Imai R., Sekimoto H. & Kamiya Y. 1999. Regulation of gibberellin biosynthesis genes during flower and early fruit development of tomato. Plant J. 17: 241–250.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T., Miura K., Itoh H., Tatsumi T., Ueguchi-Tanaka M., Ishiyama K., Kobayashi M., Agrawal G.K., Takeda S., Abe K., Miyao A., Hirochika H., Kitano H., Ashikari M. & Matsuoka M. 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 134: 1642–1653.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T., Koutarou M., Hironori I., Tomoko T., Miyako T.U., Masatomo K., Ganesh K.A., Shin T., Kiyomi A., Akio M., Hirohiko H., Hidemi K., Motoyuki A. & Makoto M. 2004. An Overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 134: 1642–1653.

    Article  PubMed  CAS  Google Scholar 

  • Serrani J.C., Sanjuan R., Ruiz-Rivero O., Fos M. & Garcia-Martinez J.L. 2007. Gibberellin regulation of fruit set and growth in tomato. Plant Physiol. 145: 246–257.

    Article  PubMed  CAS  Google Scholar 

  • Su W.R., Chen W.S., Koshioka M., Mander L.N., Hung L.S., Chen W.H., Fu Y.M. & Huang K.L. 2001. Changes in gibberellin levels in the flowering shoot of Phalaenopsis hybrida under high temperature conditions when flower development is blocked. Plant Physiol. Biochem. 39: 45–50.

    Article  CAS  Google Scholar 

  • Valkonen J.P.T., Moritz T., Watanabe K.N. & Rokka V.M. 1999. Dwarf (di)haploid pito mutants obtained from a tetraploid potato cultivar (Solanum tuberosum subsp. tuberosum) via anther culture are defective in gibberellin biosynthesis. Plant Sci. 149: 51–57.

    Article  CAS  Google Scholar 

  • Verslues P.E., Agarwal M., Katiyar-Agarwal S., Zhu J.H. & Zhu J.K. 2006. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45: 523–539.

    Article  PubMed  CAS  Google Scholar 

  • Vidal A.M., Ben-Cheikh W., Talon M. & Garcia-Martinez J.L. 2003. Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis Fo viroid. Planta 217: 442–448.

    Article  PubMed  CAS  Google Scholar 

  • Warren G., McKown R., Marin A.L. & Teutonico R. 1996. Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 111: 1011–1019.

    Article  PubMed  CAS  Google Scholar 

  • Wasilewska L.D., Bralczyk J. & Szczegielniak J. 1987. The role of gibberellin in regulation of dwarf plants development. Plant Sci. 53: 11–19.

    Article  CAS  Google Scholar 

  • Xu J., Lange T. & Altpeter F. 2002. Cloning and characterization of a cDNA encoding a multifunctional gibberellin 20-oxidase from perennial ryegrass (Lolium perenne L.). Plant Sci 163: 147–155.

    Article  CAS  Google Scholar 

  • Yamaguchi S. 2008. Gibberellin Metabolism and its Regulation. Annu. Rev. Plant Biol. 59: 225–251.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S. & Kamiya Y. 2000. Gibberellin biosynthesis: Its regulation by endogenous and environmental signals. Plant Cell Physiol. 41: 251–257.

    Article  PubMed  CAS  Google Scholar 

  • Yang G., Shen S., Yang S. & Komatsu S. 2003. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellins. Plant Physiol. Biochem. 41: 369–374.

    Article  CAS  Google Scholar 

  • Yi S.Y., Kim J.H., Joung Y.H., Lee S., Kim W.T., Yu S.H. & Choi D. 2004. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol. 136: 2862–2874.

    Article  PubMed  CAS  Google Scholar 

  • Zhang W.H. 2001. Principles and techniques of plant physiological biochemical experiment. Beijing, China, pp. 260–261.

  • Zhang X., Fowler S.G., Cheng H., Lou Y., Rhee S.Y., Stockinger E.J. & Thomashow M.F. 2004. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J. 39: 905–919.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Tang or Liebao Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, X., Cheng, X., Li, Y. et al. Differential expression of gibberellin 20 oxidase gene induced by abiotic stresses in Zoysiagrass (Zoysia japonica). Biologia 67, 681–688 (2012). https://doi.org/10.2478/s11756-012-0048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0048-3

Key words

Navigation