, Volume 67, Issue 3, pp 525–529 | Cite as

Antimicrobial activity of the protozoan toxin climacostol and its derivatives

  • Dezemona Petrelli
  • Federico Buonanno
  • Luca Agostino Vitali
  • Claudio OrtenziEmail author
Full Paper Zoology


Climacostol is a defense toxin produced by the ciliated protozoan Climacostomum virens and belongs to resorcinolic lipids, a group of compounds that shows antimicrobial, antiparasitic, and cytotoxic activities. In this study we investigate the antimicrobial activity of climacostol and its alkyl and alkynyl derivatives against a panel of bacterial and fungal pathogens. Our results show a good and comparable antimicrobial activity of the three compounds, which have resulted effective against Gram-positive bacteria and Candida with MIC and MBC ranging from 8 to 32 mg L−1, whereas no significant effect against Gram-negative species has been observed. Taken as a whole, the experimental data reported in the current study suggest that differences in the saturation rate of the lateral chain of climacostol are not related to the activity of the molecule. Therefore, it is likely that the general structure of the two moieties, i.e., the di-hydroxy-phenyl group and the alkenyl chains, contributes to the overall antibiotic behaviour.

Key words

Climacostol Climacostomum resorcinolic lipids new antibiotics antimicrobial activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Buonanno F., Guella G., Strim C. & Ortenzi C. 2012. Chemical defence by mono-prenyl hydroquinone in a freshwater ciliate, Spirostomum ambiguum. Hydrobiologia 684: 97–107. DOI: 10.1007/s10750-011-0972-1CrossRefGoogle Scholar
  2. Buonanno F. & Ortenzi C. 2010. The protozoan toxin climacostol and its derivatives: Cytotoxicity studies on 10 species of free-living ciliates. Biologia 65(4): 675–680. DOI: 10.2478/s11756-010-0071-1CrossRefGoogle Scholar
  3. Buonanno F., Quassinti L., Bramucci M., Amantini C., Lucciarini R., Santoni G., Iio H. & Ortenzi C. 2008. The protozoan toxin climacostol inhibits growth and induces apoptosis of human tumor cell lines. Chem. Biol. Interact. 176(2–3): 151–164. DOI: 10.1016/j.cbi.2008.07.007PubMedCrossRefGoogle Scholar
  4. Cameron D.W. & Riches A.G. 1995. Synthesis of stentorin, Tetrahedron Lett. 36(13): 2331–2334. DOI: 10.1016/0040-4039(95)00248-BCrossRefGoogle Scholar
  5. Cervia D., Garcia-Gil M., Simonetti E., Di Giuseppe G., Guella G., Bagnoli P. & Dini F. 2007. Molecular mechanisms of euplotin C-induced apoptosis: involvement of mitochondrial dysfunction, oxidative stress and proteases. Apoptosis 12(8): 1349–1363. DOI: 10.1007/s10495-007-0075-7PubMedCrossRefGoogle Scholar
  6. Cervia D., Martini D., Garcia-Gil M., Di Giuseppe G., Guella G., Dini F. & Bagnoli P. 2006. Cytotoxic effects and apoptotic signalling mechanisms of the sesquiterpenoid euplotin C, a secondary metabolite of the marine ciliate Euplotes crassus, in tumour cells. Apoptosis 11(5): 829–843. DOI: 10.1007/s10495-006-5700-3PubMedCrossRefGoogle Scholar
  7. Checcucci G., Shoemaker R.S., Bini E., Cerny R., Tao N., Hyon J.-S., Gioffré D., Ghetti F., Lenci F. & Song P.-S. 1997. Chemical structure of blepharismin, the photosensor pigment for Blepharisma japonicum. J. Am. Chem. Soc. 119: 5762–5763. DOI: 10.1021/ja970713qCrossRefGoogle Scholar
  8. CLSI. M100-S19. 2009. Performance standards for antimicrobial susceptibility testing. 19th Informational Supplement. Clinical and Laboratory Standards Institute, Wayne, PA, USA, 152 pp. ISBN: 1-56238-690-5Google Scholar
  9. Da Rocha A.B., Lopes R.M. & Schwartsmann G. 2001. Natural products in anticancer therapy. Curr. Opin. Pharmacol. 1(4): 364–369. PMID: 11710734PubMedCrossRefGoogle Scholar
  10. Dini F., Guella G., Giubbilini I., Mancini I. & Pietra F. 1993. Control of interspecific relationships in marine ciliate protists by most evolved natural products, Naturwissenschaften 80(2): 84–86. DOI: 10.1007/BF01140423CrossRefGoogle Scholar
  11. Fiorini D., Giuli S., Marcantoni E., Quassinti L., Bramucci M., Amantini C., Santoni G., Buonanno F. & Ortenzi C. 2010. A straightforward diastereoselective synthesis and evaluation of climacostol, a natural product with anticancer activities. Synthesis 9: 1550–1556. DOI: 10.1055/s-0029-1218695Google Scholar
  12. Gioffré D., Ghetti F., Lenci F., Paradiso C., Dai R. & Song P.-S. 1993. Isolation and characterization of the presumed photoreceptor protein of Blepharisma japonicum, Photochem. Photobiol. 58(2): 275–279. DOI: 10.1111/j.1751-1097.1993. tb09561.xCrossRefGoogle Scholar
  13. Guella G., Dini F. & Pietra F. 1995. From epiraikovenal, an instrumental niche-exploitation sesquiterpenoid of some strains of the marine ciliated protist Euplotes raikovi, to an unusual intramolecular tele dienone-olefin [2+2] photocycloaddition, Helv. Chim. Acta 78(7): 1747–1754. DOI: 10.1002/hlca.19950780708CrossRefGoogle Scholar
  14. Guella G., Dini F. & Pietra F. 1996. Epoxyfocardin and its putative biogenetic precursor, focardin, bioactive, new skeleton, diterpenoids of the marine ciliate Euplotes focardii from Antarctica. Helv. Chim. Acta 79(2): 439–448. DOI: 10.1002/hlca.19960790211CrossRefGoogle Scholar
  15. Guella G., Dini F., Tomei A. & Pietra F. 1994. Preuplotin, a putative biogenetic precursor of the euplotins, bioactive sesquiterpenoids of the marine ciliated protest Euplotes crassus. J. Chem. Soc. Perkin Trans. 1(2): 161–166. DOI: 10.1039/P19940000161CrossRefGoogle Scholar
  16. Höfle G., Pohlan S., Uhlig G., Kabbe K. & Schumacher D. 1994. KKeronopsins A and B, chemical defence substances of the marine ciliate Pseudokeronopsis rubra (Protozoa): identification by ex vivo HPLC. Angew. Chem. Int. Ed. Engl. 33(14): 1495–1497. DOI: 0.1002/anie.199414951CrossRefGoogle Scholar
  17. Kozubek A. & Tyman J.H.P. 1999. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem. Rev. 99(1): 1–25. DOI: 10.1021/cr970464oPubMedCrossRefGoogle Scholar
  18. Kozubek A., Zarnowski R., Stasiuk M. & Gubernator J. 2001. Natural amphiphilic phenols as bioactive compounds. Cell. Mol. Biol. Lett. 6(2A): 351–355.Google Scholar
  19. Lobban C.S., Hallam S.J., Mukherjee P. & Petrich J.W. 2007. Photophysics and multifunctionality of hypericinlike pigments in heterotrich ciliates: A phylogenetic perspective. Photochem. Photobiol. 83(5): 1074–1094. DOI: 10.1111/j.1751-1097.2007.00191.xPubMedCrossRefGoogle Scholar
  20. Lytollis W., Scannel R.T., An H., Murty V.S., Reddy K.S., Barr J.R. & Hecht S.M. 1995. 5-Alkylresorcinols from Hakea trifurcata that cleave DNA. J. Am. Soc. 117(51): 12683–12690. DOI: 10.1021/ja00156a004CrossRefGoogle Scholar
  21. Masaki M.E., Harumoto T., Terazima M.N., Miyake A., Usuki Y. & Iio H. 1999. Climacostol, a defense toxin of the heterotrich ciliate Climacostomum virens against predators. Tetrahedron Lett. 40(47): 8227–8229. DOI: 10.1016/S0040-4039(99)01722-0CrossRefGoogle Scholar
  22. Masaki M.E., Hiro S., Usuki Y., Harumoto T., Terazima M.N., Buonanno F., Miyake A. & Iio H. 2004. Climacostol, a defense toxin of Climacostomum virens (Protozoa, Ciliata), and its congeners. Tetrahedron 60(33): 7041–7048. DOI: 10.1016/j.tet.2003.09.105CrossRefGoogle Scholar
  23. Miyake A., Buonanno F., Saltalamacchia P., Masaki M.E. & Iio H. 2003. Chemical defence by means of extrusive cortical granules in the heterotrich ciliate Climacostomum virens. Europ. J. Protistol. 39(1): 25–36. DOI: 10.1078/0932-4739-00900CrossRefGoogle Scholar
  24. Mori K. & Abe Y. 2001. Simple synthesis of climacostol, a defensive secretion by the ciliate Climacostomum virens. Biosci. Biotechnol. Biochem. 65(9): 2110–2112. DOI: 10.1271/bbb.65.2110PubMedCrossRefGoogle Scholar
  25. Mukherjee P., Fulton D.B., Halder M., Han X., Armstrong D.W., Petrich J.W. & Lobban C.S. 2006. Maristentorin, a novel pigment from the positively phototactic marine ciliate Maristentor dinoferus, is structurally related to hypericin and stentorin. J. Phys. Chem. 110(12): 6359–6364. DOI: 10.1021/jp055871fCrossRefGoogle Scholar
  26. Muto Y., Tanabe Y., Kawai K., Okano Y. & Iio H. 2011. Climacostol inhibits Tetrahymena motility and mitochondrial respiration. Centr. Eur. J. Biol. 6(1): 99–104. DOI: 10.2478/s11535-010-0100-7CrossRefGoogle Scholar
  27. Pant B., Kato Y., Kumagai T., Matsuoka T. & Sugiyama M. 1997. Blepharismin produced by a protozoan Blepharisma functions as an antibiotic effective against methicillin-resistant Staphylococcus aureus. FEMS Microbiol. Lett. 155(1): 67–71. DOI: 10.1016/S0378-1097(97)00368-6PubMedCrossRefGoogle Scholar
  28. Petrelli D., Repetto A., D’Ercole S., Rombini S., Ripa S, Prenna M. & Vitali L.A. 2008. Analysis of methicillinsusceptible and methicillin-resistant biofilm forming Staphylococcus aureus from catheter infections isolated in a large Italian hospital. J. Med. Microbiol. 57(3): 364–372. DOI: 10.1099/jmm.0.47621-0PubMedCrossRefGoogle Scholar
  29. Rosini G., Laffi F., Marotta E., Pagani L. & Righi P. 1998. Total synthesis of the marine sesquiterpenoid raikovenal through a novel utilization of the bicyclo[3.2.0]heptenone approach. J. Org. Chem. 63(7): 2389–2391. DOI: 10.1021/jo972098eGoogle Scholar
  30. Savoia D., Avanzini C., Allice T., Callone E., Guella G. & Dini F. 2004. Antimicrobial activity of euplotin C, the sesquiterpene taxonomic marker from the marine ciliate Euplotes crassus. Antimicrob. Agents Chemother. 48(10): 3828–3833. DOI: 10.1128/AAC.48.10.3828-3833.2004PubMedCrossRefGoogle Scholar
  31. Singh U.S., Scannel R.T., An H., B Carter. J. & Hecht S.M. 1995. DNA cleavage by di- and trihydroxyalkylbenzenes. Characterization of products and the roles of O2, Cu(II), and alkali. J. Am. Soc. 117(51): 12691–12699. DOI: 10.1021/ja00156a005CrossRefGoogle Scholar
  32. Starck S.R., Deng J.Z. & Hecht S.M. 2000. Naturally occurring alkylresorcinols that mediate DNA damage and inhibit its repair. Biochemistry 39(9): 2413–2419. DOI: 10.1021/bi991509dPubMedCrossRefGoogle Scholar
  33. Stasiuk M. & Kozubek A. 2010. Biological activity of phenolic lipids. Cell. Mol. Life Sci. 67(6): 841–860. DOI: 10.1007/s00018-009-0193-1PubMedCrossRefGoogle Scholar
  34. Tao N., Orlando M., Hyon J.-S., Gross M. & Song P.-S. 1993. A new photoreceptor molecule from Stentor coeruleus. J. Am. Chem. Soc. 115: 2526–2528. DOI: 10.1021/ja00059a068CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  • Dezemona Petrelli
    • 1
  • Federico Buonanno
    • 2
  • Luca Agostino Vitali
    • 3
  • Claudio Ortenzi
    • 2
    Email author
  1. 1.School of Biosciences and BiotechnologyUniversity of CamerinoCamerino (MC)Italy
  2. 2.Department of Education ScienceUniversity of MacerataMacerataItaly
  3. 3.School of PharmacyUniversity of CamerinoCamerino (MC)Italy

Personalised recommendations