Skip to main content

Advertisement

Log in

Determination of the bacterial flora as a microbial control agent of Toxoptera aurantii (Homoptera: Aphididae)

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Toxoptera aurantii (Homoptera: Aphididae) is one of the most important pests of many agricultural plants such as camellia, cocoa and coffee worldwide. The culturable bacterial flora of the pest was determined to find new microbes that can be used as biocontrol agent against T. aurantii. A total of six bacteria were isolated and identified by a variety of morphological, physiological, biochemical and molecular tests. In addition, an approximately 1,150 bp fragment of the 16S rRNA gene region was sequenced to verify isolate identification. According to the identification studies, the isolates were identified as Bacillus tequilensis Cb1, Chryseobacterium stagni Cb2, Pseudomonas flourescens Cb3, Rahnella aquatilis Cb4, Staphylococcus sp. Cb5 and Cb6. Pathogenicity of the bacterial isolates were carried out against the last instar nymphs of T. aurantii. The highest activity was obtained from Pseudomonas flourescens Cb3 with 50% mortality within 10 days after application (p<0.05). Mortalities of other treatments ranged from 6.6 to 20%. The results presented here show that Pseudomonas flourescens Cb3 appears to be a significant candidate as a possible biocontrol agent against T. aurantii and should be beneficial in the future biocontrol programs of the pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott W.S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265–267.

    CAS  Google Scholar 

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    PubMed  CAS  Google Scholar 

  • Bahar A.A. & Demirbag Z. 2007. Isolation of pathogenic bacteria from Oberea linearis (Coleoptera: Cerambycidae). Biologia 62: 13–18.

    Article  CAS  Google Scholar 

  • Ben-Dov E., Boussiba S. & Zaritsky A. 1995. Mosquito larvicidal activity of Escherichia coli with combinations of genes from Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 177: 2581–2587.

    Google Scholar 

  • Benson D.A., Karsch-Mizrachi I., Clark K., Lipman D.J., Ostell J. & Sayers E.W. 2012. GenBank. Nucleic Acids Res. 40(Database issue): D48–D53.

    Article  PubMed  CAS  Google Scholar 

  • Bernardet J.F., Hugo C. & Bruun B. 2006. The genera Chryseobacterium and Elizabethkingia, pp. 638–675. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.H. & Stackebrandt E. (eds), The Prokaryotes: A Handbook on the Biology of Bacteria, Springer, New York.

    Google Scholar 

  • Blackman R.L. & Eastop V.F. 2000. Aphids on the World’s Crops: An Identification and Information Guide. John Wiley & Sons, Ltd., Chichester, 414 pp.

    Google Scholar 

  • Bucher G.E. 1981. Identification of bacteria found in insects, pp. 7–33. In: Burges H.D. (ed.), Microbial Control of Pests and Plant Diseases 1970–1980, Academic Press, London.

    Google Scholar 

  • Bulla L.A., Rhodes R.A. & Juliani G.S. 1975. Bacteria as insect pathogens. Annu. Rev. Microbiol. 29: 163–190.

    Article  PubMed  CAS  Google Scholar 

  • Burges H. D. 1982. Control of insects by bacteria. Parasitology 84: 79–117.

    Article  Google Scholar 

  • Carver M. 1978. The black citrus aphids, Toxoptera citricidus (Kirkaldy) and T. aurantii (Boyer de Fonscolombe) (Homoptera: Aphididae). J. Aust. Entomol. Soc. 17: 263–270.

    Article  Google Scholar 

  • Claus M. 1992. A standardized gram staining procedure. World J. Microbiol. Biotechnol. 8: 451–452.

    Article  Google Scholar 

  • Dadmal S.M., Pawar N.P., Katole S.R., Chavan V.M. & Ghawade S.M. 2000. Aphid, Toxoptera aurantii boyer de fons as a vector of citrus tristeza in Akola. Agricultural Science Digest 20: 52–53.

    Google Scholar 

  • Firempong S. & Kumar R. 1975. Natural enemies of Toxoptera aurantii (Boy.) (Homoptera: Aphididae) on cocoa in Ghana. Biol. J. Linn. Soc. 7: 261–292.

    Article  Google Scholar 

  • Gatson J.W., Benz B.F., Chandrasekaran C., Satomi M., Venkateswaran K. & Hart M.E. 2006. Bacillus tequilensis sp. nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. Int. J. Syst. Evol. Microbiol. 56: 1475–1484.

    Article  PubMed  CAS  Google Scholar 

  • Gavini F., Ferragut C., Lefebvre B. & Leclerc H. 1976. Taxonomic study of enterobacteria belonging or related to the genus Enterobacter. Ann. Microbiol. 127: 317–335.

    Google Scholar 

  • Gokce C., Sevim A., Demirbag Z. & Demir I. 2010. Isolation, characterization and pathogenicity of bacteria from Rhynchites bacchus (Coleoptera: Rhynchitidae). Biocontrol Science and Technology 20: 973–982.

    Article  Google Scholar 

  • Haas D. & Keel C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41: 117–153.

    Article  PubMed  CAS  Google Scholar 

  • Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series No. 41: 95–98.

    CAS  Google Scholar 

  • Hamze M., Mergaert J., Van-Vuuren H.J., Gavini F., Beji A., Izard D. & Kersters K. 1991. Rahnella aquatilis, a potential contaminant in lager beer breweries. Int. J. Food Microbiol. 13: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Han B. & Chen Z. 2002. Behavioral and electrophysiological responses of natural enemies to synomones from tea shoots and kairomones from tea aphids, Toxoptera aurantii. J. Chem. Ecol. 28: 2203–2219.

    Article  PubMed  CAS  Google Scholar 

  • Harrell L.J., Cameron M.L. & Ohara C.M. 1989. Rahnella aquatilis, an unusual gram-negative rod isolated from the bronchial washing of a patient with acquired immunodeficiency syndrome. J. Clin. Microbiol. 27: 1671–1672.

    PubMed  CAS  Google Scholar 

  • Hazarika L.K., Puzari K.C. & Wahab S. 2001. Biological control of tea pests, pp. 159–180. In: Upadhyay R.K., Mukerji K.G. & Chamola B.P. (eds), Biocontrol Potential and Its Exploitation in Sustainable Agriculture, Volume 2: Insect Pests, Kluwer Academic Publisher, New York.

    Chapter  Google Scholar 

  • Ince I.A., Kati H., Yilmaz H., Demir I. & Demirbag Z. 2008. Isolation and identification of bacteria from Thaumetopoea pityocampa Den. and Schiff. (Lep., Thaumetopoeidae) and determination of their biocontrol potential. World J. Microbiol. Biotechnol. 24: 3005–3015.

    Article  Google Scholar 

  • Inglis G.D., Lawrence A.M. & Davis F.M. 2000. Pathogens associated with southwestern corn borers and southern corn stalk borers (Lepidoptera: Crambidae). J. Econ. Entomol. 93: 1619–1626.

    Article  PubMed  CAS  Google Scholar 

  • Kampfer P., Chandel K., Prasad G.B.K.S., Shouche Y.S. & Veer V. 2010. Chryseobacterium culicis sp. nov., isolated from the midgut of the mosquito Culex quinquefasciatus. Int. J. Syst. Evol. Microbiol. 60: 2387–2391.

    Article  PubMed  Google Scholar 

  • Kandler O. & Weis N. 1986. Regular, nonsporing gram-positive rods, pp. 1208–1234. In: Sneath P.H.A, Mair N.S., Sharpe M.E. & Holt J.G. (eds), Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Krieg A. 1961. Grundlagen der insektenpathologie: Viren-, Rickettsien- und Bakterien-Infektionen. Darmstadt, Steinkopff, 304 pp.

    Google Scholar 

  • Kuzina L.V., Peloquin J.J., Vacek D.C. & Miller T.A. 2001. Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Curr. Microbiol. 42: 290–294.

    PubMed  CAS  Google Scholar 

  • Lacey L.A., Unruh T.R., Simkins H. & Thomsen-Archer K. 2007. Gut bacteria associated with the pacific coast wireworm, Limonius canus, inferred from 16S rDNA sequences and their implications for control. Phytoparasitica 35: 479–489.

    Article  Google Scholar 

  • Lindberg A.M., Ljungh A., Ahrne S., Lofdahl S. & Molin G. 1998. Enterobacteriaceae found in high numbers in fish, minced meat and pasteurized milk or cream and the presence of toxin encoding genes. Int. J. Food Microbiol. 39: 11–17.

    Article  PubMed  CAS  Google Scholar 

  • Lipa J.J. & Wiland E. 1972. Bacteria isolated from cutworms and their infectivity to Agrotis sp. Acta. Microbiol. Polonica 4: 127–140.

    Google Scholar 

  • Moar W.J., Pusztzai-Carey M. & Mack T.P. 1995. Toxity of purified proteins and the HD-1 strain from Bacillus thuringiensis against lesser cornstalk borer (Lepidoptera: Pyralidae). J. Econ. Entomol. 88: 606–609.

    CAS  Google Scholar 

  • Muratoglu H., Demirbag Z. & Sezen K. 2011. The first investigation of the diversity of bacteria associated with Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Biologia 66: 288–293.

    Article  CAS  Google Scholar 

  • Osborn F., Berlioz L., Vitelli-Flores J., Monsalve W., Dorta B. & Lemoine V.R. 2002. Pathogenic effects of bacteria isolated from larvae of Hylesia metabus Crammer (Lepidoptera: Saturniidae). J. Invertebr. Pathol. 80: 7–12.

    Article  PubMed  Google Scholar 

  • Padmanabhan V., Prabakaran G., Paily K.P. & Balaraman K. 2005. Toxicity of a mosquitocidal metabolite of Pseudomonas fluorescens on larvae and pupae of the house fly, Musca domestica. Indian J. Med. Res. 121: 116–119.

    PubMed  CAS  Google Scholar 

  • Palleroni N.J. 1984. Gram-negative aerobic rods and cocci, family I: Pseudomonasdaceae, pp. 141–199. In: Krieg N.R. & Holt J.G. (eds), Bergey’s Manual of Systematic Bacteriology, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Prescott L.M., Harley J.P. & Klein D.A. 1996. Microbiology. Wm. C. Brown Publishers, England, 390 pp.

    Google Scholar 

  • Rao D.G. & Capoor S.P. 1976. Toxoptera aurantii: an active vector of the Tristeza virus in India. Indian J. Horticult. 33: 165–167.

    Google Scholar 

  • Sambrook J., Fritsch E.F. & Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1448 pp.

    Google Scholar 

  • Sevim A., Demirbag Z. & Demir I. 2010. A New study on the bacteria of Agrotis segetum Schiff. (Lepidoptera: Noctuidae) and their insecticidal activities. Turk. J. Agric. For. 34: 333–342.

    CAS  Google Scholar 

  • Sezen K. & Demirbag Z. 2006. Insecticidal effects of some biological agents on Agelastica alni (Coleoptera: Chrysomelidae). Biologia 61: 687–692.

    Article  Google Scholar 

  • Sezen K., Demir I. & Demirbag Z. 2004. Study of the bacterial flora as a biological control agent of Agelastica alni L. (Coleoptera: Chrysomelidae). Biologia 59: 327–331.

    Google Scholar 

  • Soutourina O.A., Semenova E.A., Parfenova V.V., Danchin A. & Bertin P. 2001. Control of bacterial motility by environmental factors in polarly flagellated and peritrichous bacteria isolated from Lake Baikal. Appl. Environ. Microbiol. 67: 3852–3859.

    Article  PubMed  CAS  Google Scholar 

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28: 2731–2739.

    Article  PubMed  CAS  Google Scholar 

  • Tash K. 2005. Rahnella aquatilis bacteremia from a suspected urinary source. J. Clin. Microbiol. 43: 2526–2528.

    Article  PubMed  Google Scholar 

  • Thiery I. & Frachon E. 1997. Identification, isolation, culture and preservation of entomopathogenic bacteria, pp. 67–102. In: Lacey L.A. (ed.), Manual of Techniques in Insect Pathology, Acedemic Press, London.

    Google Scholar 

  • William G.W., Susan M.B., Dale A.P. & David J.L. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697–703.

    Google Scholar 

  • Yilmaz H., Sezen K., Kati H. & Demirbag Z. 2006. The first study on the bacterial flora of the European spruce bark beetle, Dendroctonus micans (Coleoptera: Scolytidae). Biologia 61: 679–686.

    Article  Google Scholar 

  • Yu H., Wang Z., Liu L., Xia Y., Cao Y. & Yin Y. 2008. Analysis of intestinal microflora in Hepialus gonggaensis larvae using 16S rRNA gene sequencing. Curr. Microbiol. 56: 391–396.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Sevim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sevim, E., Çelebi, Ö. & Sevim, A. Determination of the bacterial flora as a microbial control agent of Toxoptera aurantii (Homoptera: Aphididae). Biologia 67, 397–404 (2012). https://doi.org/10.2478/s11756-012-0022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0022-0

Key words

Navigation