Skip to main content

Advertisement

Log in

Impacts of permethrin contamination on nematode density and diversity: A microcosm study on benthic meiofauna from a Mediterranean coastal lagoon

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

A microcosm experiment was used to examine the response of nematode in terms of density and diversity at different levels of permethrin contamination. The sediments were contaminated with three permethrin concentrations [P1: low (5 mg kg−1), P2: medium (25 mg kg−1) and P3: high (250 mg kg−1)] and the effects were evaluated after 30 days. The results from univariate and multivariate analyses showed significant differences between nematode assemblages from uncontaminated control and those from permethrin treatments. All univariate indices changed significantly at all the levels of permethrin contamination. In fact, the total nematode abundance (I), Shannon-Weaner index (H′), species richness (d), evenness (J′) and number of species (S) decreased significantly in all the contaminated microcosms. In addition, the results from multivariate analyses of the species abundance data demonstrated that permethrin affects the responses of nematode species. These significant modifications in nematode community structures with response to permethrin contamination were the consequences of a different specific tolerance to this pesticide. Thus, Araeolaimus bioculatus, Calomicrolaimus honestus, Oncholaimus campylocercoides and Theristus pertenuis characterized by increased abundances in all treated replicates, appeared to be “permethrin-resistant” species. Daptonema trabeculosum was eliminated in all the doses tested and seemed to be a very sensitive species to permethrin contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alsterberg C., Sundbäck K. & Larson F. 2007. Direct and indirect effects of an antifouling biocide on benthic microalgae and meiofauna. J. Exp. Mar. Biol. Ecol. 351(1–2): 56–72. DOI: 10.1016/j.jembe.2007.06.006

    Article  CAS  Google Scholar 

  • Allan I.J., House W.A., Parker A. & Carter J.E. 2005. Diffusion of the synthetic pyrethroid permethrin into bed-sediments. Environ. Sci. Technol. 39(2): 523–530. DOI: 10.1021/es040054z

    Article  PubMed  CAS  Google Scholar 

  • Anand N. & Veerappan B. 1980. Effect of pesticides and fungicides on bluegreen algae. Phykos 19: 210–212.

    Google Scholar 

  • Austen M.C. & McEvoy A.J. 1997. The use of offshore meiobenthic communities in laboratory microcosm experiments: response to heavy metal contamination. J. Exp. Mar. Biol. Ecol. 211(2): 247–261. DOI: 10.1016/S0022-0981(96)02734-7

    Article  CAS  Google Scholar 

  • Austen M.C., McEvoy A.J. & Warwick R.M. 1994. The specificity of meiobenthic community response to different pollutants: results from microcosm experiment. Mar. Pollut. Bull. 28(9): 557–563. DOI: 10.1016/0025-326X(94)90075-2

    Article  CAS  Google Scholar 

  • Beyrem H. & Aïssa P. 2000. Les nématodes libres, organismessentinelles de l’évolution des concentrations d’hydrocarbures dans la baie de Bizerte (Tunisie). Cah. Biol. Mar. 41(3): 329–342.

    Google Scholar 

  • Beyrem H., Louati H., Essid N., Aïssa P. & Mahmoudi E. 2010. Effects of two lubricant oils on marine nematode assemblages in a laboratory microcosm experiment. Mar. Environ. Res. 69: 248–253. DOI: 10.1016/j.marenvres.2009.10.018

    Article  PubMed  CAS  Google Scholar 

  • Beyrem H., Mahmoudi E., Essid N., Hedfi A., Boufahja F. & Aissa P. 2007. Individual and combined effects of cadmium and diesel on a nematode community in a laboratory microcosm experiment. Ecotoxicol. Environ. Safe. 68(3): 412–418. DOI: 10.1016/j.ecoenv.2006.12.007

    Article  CAS  Google Scholar 

  • Bintein S. & Devillers J. 1996. Evaluating the environmental fate of atrazine in France. Chemosphere 32(12): 2441–2456. http://dx.doi.org/10.1016/0045-6535(96)00145-2

    Article  CAS  Google Scholar 

  • Boufahja F., Sellami B., Dellali D., Aïssa P., Mahmoudi E. & Beyrem H. 2011. A microcosm experiment on the effects of permethrin on a free-living nematode assemblage. Nematology 13(8):901–909. DOI: 10.1163/138855411X576628

    Article  CAS  Google Scholar 

  • Carman K.R., Fleeger J.W. & Pomarico S.M. 1997. Response of a benthic food web to hydrocarbon contamination. Limnol. Oceanogr. 42(3): 561–571.

    Article  CAS  Google Scholar 

  • Chesworth J.C., Donkin M.E. & Brown M.T. 2004. The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.). Aquat. Toxicol. 66: 293–305. DOI: 10.1016/j.aquatox.2003.10.002

    Article  PubMed  CAS  Google Scholar 

  • Clarke K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18(1): 117–143. DOI: 10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Clarke K.R. & Warwick R.M. 2001. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation. 2nd Edition. Plymouth, U.K., Plymouth Marine Laboratory, PRIMER-E, 177 pp. ISBN: 1855311402, 978-1855311404

    Google Scholar 

  • Coull B.C. 1999. Role of meiofauna in estuarine soft-bottom habitats. Aust. J. Ecol. 24(4): 327–343. DOI: 10.1046/j.1442-9993.1999.00979.x

    Article  Google Scholar 

  • Coull B.C. & Chandler G.T. 1992. Pollution and meiofauna: field, laboratory and mesocosm studies. Oceanogr. Mar. Biol. Annu. Rev. 30: 191–271.

    Google Scholar 

  • Cox C. 1998. Permethrin insecticide fact sheet. J. Pestic. Reform. 18(2): 1–20.

    Google Scholar 

  • Depledge M.H., Weeks J.M. & Bjerregaard P. 1994. Heavy metals, pp. 79–105. In: P. Callow (ed.), Handbook of Ecotoxicology, Vol. 2, Blackwell Sci. Publ., Oxford, 432 pp. ISBN: 0632029897 ISBN-13: 9780632029891

    Google Scholar 

  • Dietrich D.R., Schmid P., Zweifel U. & Schlatter C. 1996. Auswirkungen von Permethrin auf die Fauna in der Goldach, beurteilt aufgrund von Rückstandsanalysen in Sediment, Algen und Schnecken. [Effects of permethrin on the fauna of the river Goldach, assessed via residue analysis in sediment, algae, and mollusk samples]. Mitt. Gebiete Lebensm. Hyg. 87: 685–696. http://kops.ub.uni-konstanz.de/handle/urn:nbn:de:bsz:352-opus-49508

    CAS  Google Scholar 

  • Giddings J.M., Solomon K.R. & Maund S.J. 2001. Probabilistic risk assessment of cotton pyrethroids: II. Aquatic mesocosm and field studies. Environ. Toxicol. Chem. 20(3): 660–668. DOI: 10.1002/etc.5620200327

    Article  PubMed  CAS  Google Scholar 

  • Guo Y., Somerfield P.J., Warwick R.M. & Zhang Z. 2001. Largescale patterns in the community structure and biodiversity of free living nematodes in the Bohai Sea, China. J. Mar. Biol. Assoc. U.K. 81(5): 755–763. DOI: 10.1017/S0025315401004568

    Article  Google Scholar 

  • Gyedu-Ababio T.K & Baird D. 2006. Response of meiofauna and nematode communities to increased levels of contaminants in a laboratory microcosm experiment. Ecotoxicol. Environ. Safe. 63(3): 443–450. DOI: 10.1016/j.ecoenv.2005.01.010

    Article  CAS  Google Scholar 

  • Heip C., Vincx M. & Vranken G. 1985. The ecology of marine nematodes. Oceanogr. Mar. Biol. Annu. Rev. 23: 399–489.

    Google Scholar 

  • Hermi M., Mahmoudi E., Beyrem H., Aïssa P. & Essid N. 2008. Responses of a Free-living Marine Nematode Community to Mercury Contamination: Results from Microcosm Experiments. Arch. Environ. Contam. Toxicol. 56(3): 426–433. DOI: 10.1007/s00244-008-9217-3

    Article  PubMed  Google Scholar 

  • Kreutzweiser D.P. & Sibley P.K. 1991. Invertebrate drift in a headwater stream treated with permethrin. Arch. Environ. Contam. Toxicol. 20(3): 330–336. DOI: 10.1007/BF01064398

    Article  CAS  Google Scholar 

  • Langston W.J. & Spence S.K. 1994. Metal analysis, pp. 45–78. In: Callow P. (ed.), Handbook of Ecotoxicology, Vol. 2, Blackwell Sci. Publ., Oxford, 432 pp. ISBN: 0632029897 ISBN-13: 9780632029891

    Google Scholar 

  • Laskowski D.A. 2002. Physical and chemical properties of pyrethroids. In: Ware G.W. (ed.), Rev. Environ. Contam. Toxicol., Springer-Verlag, New York, NY, USA. 174: 49–170. PMID: 12132343

    Google Scholar 

  • Lee S., Gan J., Kim J.S., Kabashima J.N. & Crowley D.E. 2004. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ. Toxicol. Chem. 23(1): 1–6. DOI: 10.1897/03-114

    Article  PubMed  CAS  Google Scholar 

  • Liu W., Gan J.J., Lee S. & Kabashima J. 2004. Phase distribution of synthetic pyrethroids in runoff and stream water. Environ. Toxicol. Chem. 23(1): 7–11. DOI: 10.1897/03-183

    Article  PubMed  Google Scholar 

  • Ma J., Zheng R., Xu L. & Wang S. 2002. Differential sensitivity of two green algae, Scenedesmus obliqnus and Chlorella pyrenoidosa to 12 pesticides. Ecotoxicol. Environ. Safe. 52(1): 57–61. DOI: 10.1006/eesa.2002.2146

    Article  CAS  Google Scholar 

  • Mahmoudi E., Essid N., Beyrem H., Hedfi A., Boufahja F., Vitiello P. & Aïssa P. 2005. Effects of hydrocarbon contamination on a free-living marine nematode community: Results from Microcosm Experiments. Mar. Pollut. Bull. 50(11): 1197–1204. DOI: 10.1016/j.marpolbul.2005.04.018

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudi E., Essid N., Beyrem H., Hedfi A., Boufahja F., Vitiello P. & Aïssa P. 2007. Individual and combined effects of lead and zinc on a free-living marine nematode community: results from microcosm experiments. J. Exp. Mar. Biol. Ecol. 343(2): 217–226. DOI: 10.1016/j.jembe.2006.12.017

    Article  CAS  Google Scholar 

  • Maund S.J., Hamer M.J., Lane M.C.G., Farrelly E., Rapley J.H., Goggin U.M. & Gentle W.E. 2002. Partitioning, bioavailability, and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environ. Toxicol. Chem. 21(1): 9–15. DOI: 10.1002/etc.5620210102

    Article  PubMed  CAS  Google Scholar 

  • Muir D.C.G., Rawn G.P. & Grift N.P. 1985. Fate of the pyrethroid insecticide deltamethrin in small ponds: A mass balance study. J. Agric. Food. Chem. 33(4): 603–609. DOI: 10.1021/jf00064a011

    Article  CAS  Google Scholar 

  • Ólafsson E., Johnstonea R.W. & Ndaro S.G.M. 1995. Effects of intensive seaweed farming on the meiobenthos in a tropical lagoon. J. Exp. Mar. Biol. Ecol. 191(1): 101–117. DOI: 10.1016/0022-0981(95)00055-V

    Article  Google Scholar 

  • Oros D.R., Jarman W.M., Lowe T., David N., Lowe S. & Davis J.A. 2003. Surveillance for previously unmonitored organic contaminants in the San Francisco estuary. Mar. Pollut. Bull. 46(9): 1102–1110. DOI: 10.1016/S0025-326X(03)00248-0

    Article  PubMed  CAS  Google Scholar 

  • Padhy R.N. 1985. Cyanobacteria and pesticides. Residue Rev. 95: 1–44.

    CAS  Google Scholar 

  • Pinckney J.L., Carman K.R., Lumsden S.E. & Hymel S.N. 2003. Microalgal-meiofaunal trophic relationships in muddy inter-tidal estuarine sediments. Aquat. Microb. Ecol. 31(1): 99–108. DOI: 10.3354/ame031099

    Article  Google Scholar 

  • Platt H.M. & Warwick R.M. 1983. Free-living marine nematodes, Part I, British Enoplids. Synopses of the British Fauna (New Series). Kermack D.M. & Barnes R.S.K. (ed.), No. 28, The Linnean Society & The Estuarine and Coastal Sciences Association Publ, Cambridge University Press, 307 pp. ISBN: 0-521-25422-1

  • Platt H.M. & Warwick, R.M. 1988. Free-living marine nematodes, Part II, British Chromadorids. Synopses of the British Fauna (New Series). Kermack D.M. & Barnes R.S.K. (ed.), No. 38, The Linnean Society & The Estuarine and Coastal Sciences Association Publ, E.J. Brill/W. Backhuys, Leiden, 264 pp. ISBN: 90-04-08595-5

    Google Scholar 

  • Sánchez-Fortún S. & Barahona M.V. 2005. Comparative study on the environmental risk induced by several pyrethroids in estuarine and freshwater invertebrate organisms. Chemosphere 59(4): 553–559. DOI: 10.1016/j.chemosphere.2004.12.023

    Article  PubMed  Google Scholar 

  • Schizas N.V., Chandler G.T., Coull B.C., Klosterhaus S.L. & Quattro J.M. 2001. Differential survival of three mitochondrial lineages of a marina benthic copepod exposed to a pesticide mixture. Environ. Sci. Technol. 35(3): 535–538. DOI: 10.1021/es001219g

    Article  PubMed  CAS  Google Scholar 

  • Solomon K.R., Giddings J.M. & Maund S.J. 2001. Probabilistic risk assessment of cotton pyrethroids: I. Distributional analyses of laboratory aquatic toxicity data. Environ. Toxicol. Chem. 20(3): 652–659. DOI: 10.1002/etc.5620200326

    CAS  Google Scholar 

  • Staton J.L., Schizas N.V., Chandler G.T., Coull B.C. & Quattro J.M. 2001. Ecotoxicology and population genetic: the emergence of “phytogeographic and evolutionary ecotoxicology”. Ecotoxicol. 10(4): 217–222.

    Article  CAS  Google Scholar 

  • Suderman K. & Thistle D. 2003. Spills of fuel oil #6 and orimulsion can have indistinguishable effects on the benthic meiofauna. Mar. Pollut. Bull. 46(1): 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Thompson B.A.W., Goldsworthy P.M., Riddle M.J., Snape I. & Stark J.S. 2007. Contamination effects by a ‘conventional’ and a ‘biodegradable’ lubricant oil on infaunal recruitment to Antarctic sediments: A field experiment. J. Exp. Mar. Biol. Ecol. 340(2): 213–226. DOI: 10.1016/j.jembe.2006.09.010

    Article  CAS  Google Scholar 

  • Thurston R.V., Gilfoil T.A., Meyn E.L., Azjdel R.K., Aoki T.I., & Veith G.D. 1985. Comparative toxicity of ten organic chemicals to ten common aquatic species. Water Res. 19(9): 1145–1155. DOI: 10.1016/0043-1354(85)90351-3

    Article  CAS  Google Scholar 

  • Tomlin C.D.S. (ed.) 1997. The Pesticide Manual — World Compendium, 11th Ed., British Crop Protection Council, Surrey, England 1997. 〈http://www.bcpc.org/

    Google Scholar 

  • Warwick R.M., Platt H.M. & Somerfield P.J. 1998. Free-living marine nematodes, Part III, British Monhysterids. Synopses of the British Fauna (New Series). Barnes R.S.K. & Crothers J.H. (ed.), No. 53, Shrewsbury for The Linnean Society & The Estuarine and Coastal Sciences Association Publ, Field Studies Council, 296 pp. ISBN: 1851532609

  • Werner R.A. & Hilgert J.W. 1992. Effects of permethrin on aquatic organisms in a freshwater stream in South-Central Alaska. J. Econ. Entomol. 85(3): 860–864.

    PubMed  CAS  Google Scholar 

  • Weston D.P., You J. & Lydy M.J. 2004. Distribution and toxicity of sediment-associated pesticides in the agriculture-dominated water bodies of California’s Central Valley. Environ. Sci. Technol. 38(10): 2752–2759. DOI: 10.1021/es0352193

    Article  PubMed  CAS  Google Scholar 

  • Wieser W. 1960. Benthic studies in Buzzards Bay. II. The meiofauna. Limnol. Oceanogr. 5(2): 121–137.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezzeddine Mahmoudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soltani, A., Louati, H., Hanachi, A. et al. Impacts of permethrin contamination on nematode density and diversity: A microcosm study on benthic meiofauna from a Mediterranean coastal lagoon. Biologia 67, 377–383 (2012). https://doi.org/10.2478/s11756-012-0021-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0021-1

Key words

Navigation