Skip to main content
Log in

Characterization of an A-type cyclin-dependent kinase gene from Dendrobium candidum

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Cyclin-dependent kinases (CDKs) play an essential role in cell cycle regulation during the embryonic and postembryonic development of organisms. To better understand the molecular mechanisms of CDKs involved in embryogenesis regulation in the endangered medicinal plant Dendrobium candidum Wall. ex Lindl., a 1229-bp full-length cDNA of an A-type CDK gene, Denca;CDKA;1, was identified using 3′ rapid amplification of cDNA end (RACE) PCR. Denca;CDKA;1 was predicted to encode a 294 amino acid residue-long protein of 33.76 kDa with an isoelectric point of 7.72. The deduced Denca;CDKA;1 protein contained a conserved serine/threonine-protein kinase domain (S-TKc) and a canonical cyclinbinding “PSTAIRE” motif. Multiple sequence alignment indicated that members of CDKA family from various plants exhibited a high degree of sequence identity ranging from 82% to 93%. A neighbor-joining phylogenetic tree showed that Denca;CDKA;1 was clustered into the plant group and was distant from the animal and fungal groups. The modeled three-dimensional structure of Denca;CDKA;1 exhibited the similar functional structure of a fold consisting of β-sheets and α-helices joined by discontinuous random coils forming two relatively independent lobes. Quantitative real-time PCR analysis revealed that Denca;CDKA;1 transcripts were the most abundant in protocorm-like bodies with 4.76 fold, followed by that in roots (4.19 fold), seeds (2.57 fold), and stems (1.57 fold). This study characterized the novel Denca;CDKA;1 gene from D. candidum for the first time and the results will be useful for further functional determination of the gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAK:

CDK-activating kinase

cdc:

cell division cycle

CDK:

cyclin-dependent kinase

CKL:

cyclin dependent kinase like

Ct:

cycle threshold

CTAB:

cetyltrimethyl ammonium bromide

GSP:

gene specific primer

ICK:

inhibitor of CDK

M-MLV RT:

moloney leukemia virus reverse transcriptase

ORF:

open reading frame

PDB:

protein data bank

PLB:

protocorm-like body

qRT-PCR:

quantitative real-time polymerase chain reaction

RACE:

rapid amplification of cDNA ends

S-TKc:

serine/threonine-protein kinase domain

UTR:

un-translated region

References

  • Adachi S., Nobusawa T. & Umeda M. 2009. Quantitative and cell type-specific transcriptional regulation of A-type cyclin-dependent kinase in Arabidopsis thaliana. Dev. Biol. 329: 306–314.

    Article  PubMed  CAS  Google Scholar 

  • Arnold K., Bordoli L., Kopp J. & Schwede T. 2006. The SWISSMODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics 22: 195–201.

    Article  PubMed  CAS  Google Scholar 

  • Barrôco R.M., De Veylder L., Magyar Z., Engler G., Inzé D. & Mironov V. 2003. Novel complexes of cyclin-dependent kinases and a cyclin-like protein from Arabidopsis. Cell. Mol. Life Sci. 60: 401–412.

    Article  PubMed  Google Scholar 

  • Benson D.A., Karsch-Mizrachi I., Clark K., Lipman D.J., Ostell J. & Sayers E.W. 2012. GenBank. Nucleic Acids Res. 40(Database issue): D48–D53.

    Article  PubMed  CAS  Google Scholar 

  • Chen Z.H., Sun X.F. & Tang K.X. 2005. Cloning and expression of a novel cDNA encoding a mannose-binding lectin from Dendrobium officinale. Toxicon 45: 535–540.

    Article  PubMed  CAS  Google Scholar 

  • Dissmeyer N., Nowack M.K., Pusch S., Stals H., Inzé D., Grini P.E. & Schnittger A. 2007. T-loop phosphorylation of Arabidopsis CDKA;1 is required for its function and can be partially substituted by an aspartate residue. Plant Cell 19: 972–985.

    Article  PubMed  CAS  Google Scholar 

  • Footitt S., Ingouff M., Clapham D. & von Arnold S. 2003. Expression of the viviparous 1 (Pavp1) and p34cdc2 protein kinase (cdc2Pa) genes during somatic embryogenesis in Norway spruce (Picea abies [L.] Karst). J. Exp. Bot. 54: 1711–1719.

    Article  PubMed  CAS  Google Scholar 

  • Francis D. 2007. The plant cell cycle — 15 years on. New Phytol. 174: 261–278.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez C. 2005. Coupling cell proliferation and development in plants. Nat. Cell Biol. 7: 535–541.

    Article  PubMed  CAS  Google Scholar 

  • Hartwell L.H., Culotti J., Pringle J.R. & Reid B.J. 1974. Genetic control of the cell division cycle in yeast. Science 183: 46–51.

    Article  PubMed  CAS  Google Scholar 

  • Hemerly A., de Almeida Engler J., Bergounioux C., Van Montagu M., Engler G., Inze D. & Ferreira P. 1995. Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO J. 14: 3925–3936.

    PubMed  CAS  Google Scholar 

  • Hemerly A.S., Ferreira P., de Almeida Engler J., Van Montagu M., Engler G. & Inzé D. 1993. cdc2a expression in Arabidopsis is linked with competence for cell division. Plant Cell 5: 1711–1723.

    Article  PubMed  CAS  Google Scholar 

  • Hemerly A.S., Ferreira P.C., Van Montagu M., Engler G. & Inze D. 2000. Cell division events are essential for embryo patterning and morphogenesis: studies on dominant-negative cdc2aAt mutants of Arabidopsis. Plant J. 23: 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Hindley J. & Phear G.A. 1984. Sequence of the cell division gene CDC2 from Schizosaccharomyces pombe; patterns of splicing and homology to protein kinases. Gene31: 129–13

    Article  PubMed  CAS  Google Scholar 

  • Huan L.V.T., Takamura T. & Tanaka M. 2004. Callus formation and plant regeneration from callus through somatic embryo structures in Cymbidium orchid. Plant Sci. 166: 1443–1449.

    Article  CAS  Google Scholar 

  • Huang X. & Madan A. 1999. CAP3: A DNA sequence assembly program. Genome Res. 9: 868–877.

    Article  PubMed  CAS  Google Scholar 

  • Iandolino A.B., Goes da Silva F., Lim H., Choi H., Williams L.E. & Cook D.R. 2004. High-quality RNA, cDNA, and derived EST libraries from grapevine (Vitis vinifera L.). Plant Mol. Biol. Rep. 22: 269–278.

    Article  CAS  Google Scholar 

  • Iwakawa H., Shinmyo A. & Sekine M. 2006 Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. Plant J. 45: 819–831.

    Article  PubMed  CAS  Google Scholar 

  • Joubès J., Chevalier C., Dudits D., Heberle-Bors E., Inzé D., Umeda M. & Renaudin J.P. 2000. Cyclin-dependent kinaserelated protein kinases in plants. Plant Mol. Biol. 43: 607–620.

    Article  PubMed  Google Scholar 

  • Joubès J., Phan T.H., Just D., Tothan C., Bergounioux C., Raymond P. & Chevalier C. 1999. Molecular and biochemical characterization of the involvement of cyclin-dependent kinase A during the early development of tomato fruit. Plant Physiol. 121: 857–869.

    Article  PubMed  Google Scholar 

  • Kozak M. 1987. An analysis of 50-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15: 8125–8132.

    Article  PubMed  CAS  Google Scholar 

  • Li Y., Wang C.L., Wang Y.J., Guo S.X., Yang J.S., Chen X.M. & Xiao P.G. 2009. Three new bibenzyl derivatives fromDendrobium candidum. Chem. Pharm. Bull. 57: 218–219.

    Article  PubMed  CAS  Google Scholar 

  • Luo A.X., He X.J., Zhou S.D., Fan Y.J., Luo A.S. & Chun Z. 2010. Purification, composition analysis and antioxidant activity of the polysaccharides. Carbohyd. Polym. 79: 1014–1019.

    Article  CAS  Google Scholar 

  • McGrath C.F., Pattabiraman N., Kellogg G.E., Lemcke T., Kunick C., Sausville E.A., Zaharevitz D.W. & Gussio R. 2005. Homology model of the CDK1/cyclin B complex. J. Biomol. Struct. Dyn. 22: 0379–1102.

    Google Scholar 

  • Men S., Ming X., Wang Y., Liu R., Wei C. & Li Y. 2003. Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep. 21: 592–598.

    PubMed  CAS  Google Scholar 

  • Menges M., de Jager S.M., Gruissem W. & Murray J.A.H. 2005. Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J. 41: 546–566.

    Article  PubMed  CAS  Google Scholar 

  • Montero-Cortés M., Rodríguez-Paredes F., Burgeff C., Pérez-Nuńez T., Córdova I., Oropeza C., Verdeil J.L. & Sáenz L. 2010. Characterisation of a cyclin-dependent kinase (CDKA) gene expressed during somatic embryogenesis of coconut palm. Plant Cell Tissue Organ Cult. 1102: 251–258.

    Article  Google Scholar 

  • Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Nicholas R.B., Martin E.M.N., Alison M.L., May C.M., Paul T., Gilles D., Louise N.J. & Jane A.E. 1999. Effects of phosphorylation of threonine 160 on cyclin-dependent kinase 2 structure and activity. J. Biol. Chem. 274: 8746–8756.

    Article  Google Scholar 

  • Nowack M.K., Grini P.E., Jakoby M.J., Lafos M., Koncz C. & Schnittger A. 2006. A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat. Genet. 38: 63–67.

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl M.W. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29: e45.

    Article  PubMed  CAS  Google Scholar 

  • Renaudin J.P, Doonan J.H., Freeman D., Hashimoto J., Hirt H., Inzé D., Jacobs T., Kouchi H., Rouzé P., Sauter M., Savouré A., Sorrell D.A., Sundaresan V. & Murray J.A.H. 1996. Plant cyclins: a unified nomenclature for plant A-, B- and D- type cyclins based on sequence organization. Plant Mol. Biol. 32: 1003–1018.

    Article  PubMed  CAS  Google Scholar 

  • Rozen S. & Skaletsky H. 2000. Primer3 on the www for general users and for biologist programmers. Methods Mol. Biol. 132: 365–386.

    PubMed  CAS  Google Scholar 

  • Song J. & Guo S.X. 2001. Effects of fungus on the growth of Dendrobium candidum and D. nobile in vitro culture. Acta Academiae Medicinae Sinicae 23: 547–551.

    PubMed  CAS  Google Scholar 

  • Stewart S.L., Zettler L.W., Minso J. & Brown P.M. 2003. Symbiotic germination and reintroduction of Spiranthes brevilabris Lindley, an endangered orchid native to Florida. Selbyana 24: 64–70.

    Google Scholar 

  • Suwanaketchanatit C., Piluek J., Peyachoknagul S. & Huehne P.S. 2007. High efficiency of stable genetic transformation in Dendrobium via microprojectile bombardment. Biol. Plant. 51: 720–727.

    Article  CAS  Google Scholar 

  • Takatsuka H., Ohno R. & Umeda M. 2009. The Arabidopsis cyclin-dependent kinase-activating kinase CDKF;1 is a major regulator of cell proliferation and cell expansion but is dispensable for CDKA activation. Plant J. 59: 475–487.

    Article  PubMed  CAS  Google Scholar 

  • Tamura K., Dudley J., Nei M. & Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Tank J.G. & Thaker V.S. 2011. Cyclin dependent kinases and their role in regulation of plant cell cycle. Biol. Plant. 55: 201–212.

    Article  CAS  Google Scholar 

  • Umeda M., Shimotohno A. & Yamaguchi M. 2005. Control of cell division and transcription by cyclin-dependent kinaseactivating kinases in plants. Plant Cell Physiol. 46: 1437–1442.

    Article  PubMed  CAS  Google Scholar 

  • Vandepoele K., Raes J., De Veylder L., Rouzé P., Rombauts S. & Inzé D. 2002. Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14: 903–916.

    Article  PubMed  CAS  Google Scholar 

  • Wang H., Fang H.Y., Wang Y.Q., Duan L.S. & Guo S.X. 2011. In situ seed baiting techniques in Dendrobium officinale Kimura et Migo and Dendrobium nobile Lindl.: the endangered Chinese endemic Dendrobium (Orchidaceae). World J. Microbiol. Biotechnol. 27: 2051–2059.

    Article  Google Scholar 

  • Xiao L., Ng T.B., Feng Y.B., Yao T., Wong J.H., Yao R.M., Li L., Mo F.Z., Xiao Y., Shaw P.C., Li Z.M., Sze S.C. & Zhang K.Y. 2011. Dendrobium candidum extract increases the expression of aquaporin-5 in labial glands from patients with Sjögren’s syndrome. Phytomedicine 18: 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Yang M., Ge Y., Wu J.Y, Xiao J.F. & Yu J. 2011. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein-protein interaction. J. Genet. Genomics 38: 201–207.

    Article  PubMed  Google Scholar 

  • Zhao P., Wu F., Feng F.S. & Wang W.J. 2008. Protocorm-like body (PLB) formation and plant regeneration from the callus culture of Dendrobium candidum Wall. ex Lindl. In Vitro Cell. Dev. Biol. Plant 44: 178–185.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Xing Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Song, C., Zhao, MM. et al. Characterization of an A-type cyclin-dependent kinase gene from Dendrobium candidum . Biologia 67, 360–368 (2012). https://doi.org/10.2478/s11756-012-0016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0016-y

Key words

Navigation