Skip to main content
Log in

Chlorophyll a fluorescence study revealing effects of flooding in canola hybrids

  • Section Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

By generating stress conditions soil flooding can induce alterations in the cell metabolism and thus is detrimental to plant growth. This study was done under the greenhouse conditions to determine the effect of soil flooding on the chlorophyll fluorescence of some hybrids of canola (Brassica napus L.). Fifty five days old plants were subjected to flooding for six days. There was no difference in the parameters modulate chlorophyll fluorescence, in contrast, some the parameters related to the energy flux in photosystem II varied due to flooding stress. At the end of the six days, the performance indexes (PItotal and PIABS) decreased, in all hybrids except in ‘Hyola 420’. The difference kinetics of the chlorophyll a fluorescence transient showed different effects on different sites of the photosynthetic machinery. It could be concluded that compared to the other hybrids, ‘Hyola 420’ was less sensitive to flooding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen J.A., Pezensky S.R. & Chambers J.L. 1996. Interaction of flooding and salinity stress on balcypress (Taxodium disticum). Tree Physiol. 16: 307–313.

    PubMed  Google Scholar 

  • Bailey-Serres J. & Voesenek L.A.C.J. 2008. Flooding Stress: Acclimations and Genetic Diversity. Annu. Rev. Plant Biol. 59: 313–339.

    Article  PubMed  CAS  Google Scholar 

  • Christen D., Schönmann S., Jermini M., Strasser R.J. & Défago G. 2007. Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ. Exp. Bot. 60: 504–514.

    Article  CAS  Google Scholar 

  • De Ronde J.A., Cress W.A., Krüger G.H.J., Strasser R.J. & Van Staden J. 2004. Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J. Plant Physiol. 161: 1211–1224.

    Article  PubMed  Google Scholar 

  • Evans D.E. 2004. Aerenchyma formation. New Phytol. 161: 35–49.

    Article  Google Scholar 

  • Force L., Critchley C. & Van Rensen J.J.S. 2003. New fluorescence parameters for monitoring photosynthesis in plants. Photosynth. Res. 78: 17–33.

    Article  PubMed  CAS  Google Scholar 

  • Hoagland D. & Arnon D.I. 1950. The water culture method for growing plants without soil. California Agriculture Experimental Station Circular, 347 pp.

  • Kozlowski T.T. 1997. Responses of woody plants to flooding and salinity. Tree Physiol. Monograph 1: 1–29.

    Google Scholar 

  • Kozlowski T.T., Kramer P.L. & Pallardy S.G. 1991. The Physiological Ecology of Woody Plants. Academic Press, San Diego, 657 pp.

    Google Scholar 

  • Mehta P., Jajoo A., Mathur S. & Bharti, S. 2010. Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol. Biochem. 48: 16–20.

    Article  PubMed  CAS  Google Scholar 

  • Mielke M.S. & Schaffer B. 2010. Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environ. Exp. Bot. 68: 113–121.

    Article  CAS  Google Scholar 

  • Oukarroum A., El Madidi S., Schansker G. & Strasser R.J. 2007. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ. Exp. Bot. 60: 438–446.

    Article  CAS  Google Scholar 

  • Panda D., Sharma S.G. & Sarkar R.K. 2008. Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquat. Bot. 88: 127–133.

    Article  CAS  Google Scholar 

  • Papageorgiou G.G. & Govindjee 2011. Photosynstem II fluorescence: Slow changes — Scaling from the past, J. Photochem. Photobiol. B: Biol. doi:10.1016/j.jphotobiol.2011.03.008.

  • Pezeshki S.R. 2001. Wetland plant responses to soil flooding. Environ. Exp. Bot. 46: 299–312.

    Article  Google Scholar 

  • Sairam R.K., Kumutha D., Ezhilmathi K., Deshmukh P.S. & Srivastava G.C. 2008. Physiology and biochemistry of water-logging tolerance in plants. Biol. Plant. 52: 401–412.

    Article  CAS  Google Scholar 

  • Srivastava A., Guisse B., Greppin H. & Strasser R.J. 1997. Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient OKJIP. Biochim. Biophys. Acta 1320: 95–106.

    Article  CAS  Google Scholar 

  • Stirbet A. & Govindjee 2011. On the relation between the Kautsky effects (chlorophyll a fluorescence induction) and photosystem II: Basics and application of the OJIP fluorescence transient. J. Photochem. Photobiol. B: Biol. doi:10.1016/j.jphotobiol.2010.12.010

  • Strasser R.J. 1981. The grouping model of plant photosynthesis: heterogeneity of photosynthetic units in thylakoids, pp. 727–737. In: Akoyunoglou G. (ed.), Photosynthesis III. Structure and Molecular Organization of the Photosynthetic Apparatus, Balaban, International Science Services, Philadelphia.

  • Strasser R.J. & Stirbet A.D. 1998. Heterogeneity of Photosystem II probed by the numerically simulated chlorophyll a fluorescence rise (O-J-I-P). Math. Comput. Simul. 48: 3–9.

    Article  Google Scholar 

  • Strasser A., Tsimilli-Michael M. & Srivastava A. 2004. Analysis of the fluorescence transient, pp. 321–362. In: Papageorgiou G.C. & Govindjee (eds), Chlorophyll Fluorescence: A Signature of Photosynthesis. Advances in Photosynthesis and Respiration Series, Springer, Dordrecht.

    Google Scholar 

  • Strasser B.J. & Strasser R.J. 1995. Measuring fast fluorescence transient to address environmental questions: The JIP-test, pp. 977–980. In: Mathis P. (ed.), Photosynthesis: from Light to Biosphere, Kluwer Academic Publisher, Dordrecht.

    Google Scholar 

  • Strasser R.J. 1997. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth. Res. 52: 147–155.

    Article  CAS  Google Scholar 

  • Strasser R.J., Srivastava A. & Tsimilli-Michael M. 1999. Screening the vitality and photosynthetic activity of plants by the fluorescence transient, pp. 72–115. In: Behl R.K., Punia M.S. & Lather B.P.S. (eds), Crop Improvement for Food Security. SSARM, Hisar, India.

    Google Scholar 

  • Strasser R.J., Srivastava A. & Tsimilli-Michael M. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples, pp. 443–480. In: Yunus M., Pathre U. & Mohanty P. (eds), Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor and Francis, London.

    Google Scholar 

  • Tsimilli-Michael M. & Strasser R.J. 2008. In vivo assessment of plants’; vitality: applications in detecting and evaluating the impact of Mycorrhization on host plants, pp. 679–703. In: Varma A. (ed.), Mycorrhiza: State of the Art, Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics, 3rd edition, Springer Verl., Dordrecht.

    Google Scholar 

  • Yusuf M.A., Kumar D., Rajwanshi R., Strasser R.J., Tsimilli-Michael, M., Govindjee & Sarin N.B. 2010. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. Biochim. Biophys. Acta 1797: 1428–1438.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Antonio Bacarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perboni, A.T., Cassol, D., da Silva, F.S.P. et al. Chlorophyll a fluorescence study revealing effects of flooding in canola hybrids. Biologia 67, 338–346 (2012). https://doi.org/10.2478/s11756-012-0006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-012-0006-0

Key words

Navigation