Skip to main content
Log in

In silico identification and analysis of the protein disulphide isomerases in wheat and rice

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The protein disulphide isomerases (PDI) typically catalyse the formation and isomerization of disulphide bonds during the folding of nascent proteins. Some PDI isoforms may also have chaperone roles under house-keeping and/or stress conditions. Human PDIs and PDI-like (PDIL) proteins show a diverse array of catalytic and chaperone roles. However, understanding of the diversity and roles of plant PDILs is limited. This work aimed to identify the PDIL superfamilies in the two main cereals, rice and wheat, to identify candidates with potential roles in seed storage protein deposition and stress response processes. Searches of the rice genomic and wheat transcript assembly databases, with the Arabidopsis PDILs as queries, led to the identification of twenty two genomic loci in rice, encoding up to thirty two putative coding sequences, as well as twenty expressed sequence tags in wheat. The gene structures in rice ranged from 3 to 15 exons, the exon lengths ranging from 22 to 1,054 base pairs (bp) and the intron lengths from 74 to 1345 bp. The wheat TAs ranged from 584-2,444 bp and many sequences appeared to be orthologous to some of the rice loci. The putative proteins of both plants exhibited the characteristic thioredoxin active-site motif WCXXC, but significant diversity in the lengths of putative proteins and the composition or positions of functional domains therein. The PDILs thus fell into five major groups: PDIL1 (7 in rice; 4 in wheat); PDIL2 (9 rice; 4 wheat); PDIL5 (7 rice; 10 wheat); QSOXL (2 rice; 1 wheat); APRL (7 rice; 1 wheat). The analysis of the gene and putative protein sequences, the functional domains of the latter, and comparisons to literature have led to identification of a number of sequences with potential enzymatic and/or chaperone roles. Several of these appear to be candidates for key roles in seed storage protein folding, plant development and stress response processes in these important crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APRL:

adenosine 5′-phosphosulfate reductase-like

BiP:

binding protein

CDS:

coding sequence

ER:

endoplasmic reticulum

ERAD:

ER-associated degradation

EST:

expressed sequence tag

FRX:

ferredoxin

GRX:

glutaredoxins

GSDS:

Gene Structure Display Server

Hsp:

heat-shock protein

PB:

protein body

PDI:

protein disulphide isomerase

PDIL:

protein disulphide isomerase-like proteins

PPIases:

peptidyl prolyl cis-trans isomerase

PRXs:

peroxiredoxin

PSV:

protein storage vacuole

QSOXL:

quiescin-sulfhydryl oxidase-like

QTL:

quantitative trait locus

TA:

transcript assembly

TRX:

thioredoxin

UPR:

unfolded protein response

References

  • Appenzeller-Herzog C. & Ellgaard L. 2008. The human PDI family: versatility packed into a single fold. Biochim. Biophys. Acta 1738: 535–548.

    Article  Google Scholar 

  • Bhave M., Wu H. & Kamboj A. 2011. Protein disulphide isomerases: diversity and roles in plants, pp. 1–40. In: Walters E. (ed.), Protein Folding, Nova Publishers, New York, USA.

    Google Scholar 

  • Boden G., Duan X., Homko C., Molina E., Song W., Perez O., Cheung P. & Merali S. 2008. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57: 2438–2444.

    Article  PubMed  CAS  Google Scholar 

  • Bulleid N. & Freedman R. 1988. Defective co-translational formation of disulphide bonds in protein disulphide-isomerasedeficient microsomes. Nature 335: 649–651.

    Article  PubMed  CAS  Google Scholar 

  • Cai H., Wang C. & Tsou C. 1994. Chaperone-like activity of protein disulfide isomerase in the refolding of a protein with no disulfide bonds. J. Biol. Chem. 269: 24550–24552.

    PubMed  CAS  Google Scholar 

  • Ciaffi M., Paolacci A., d’Aloisio E., Tanzarella O. & Porceddu E. 2006. Cloning and characterization of wheat PDI (protein disulfide isomerase) homoeologous genes and promoter sequences. Gene 366: 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Coughlan J., Hastings C. & Winfrey R. 1996. Molecular characterisation of plant endoplasmic reticulum identification of protein disulfide-isomerase as the major reticuloplasmin. Eur. J. Biochem. 235: 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Creighton T., Hillson D. & Freedman R. 1980. Catalysis by protein-disulphide isomerase of the unfolding and refolding of proteins with disulphide bonds. J. Mol. Biol. 142: 43–62.

    Article  PubMed  CAS  Google Scholar 

  • d’Aloisio E., Paolacci A.R., Dhanapal A.P., Tanzarella O.A., Porceddu E. & Ciaffi M. 2010. The protein disulfide isomerase gene family in bread wheat (T. aestivum L.). BMC Plant Biol. 10: 101.

    Article  PubMed  Google Scholar 

  • Darby N., Penkaa E. & Vincentelli R. 1998. The multi-domain structure of protein disulfide isomerase is essential for high catalytic efficiency. J. Mol. Biol. 276: 239–247.

    Article  PubMed  CAS  Google Scholar 

  • DuPont F., Hurkman W., Vensel W., Chan R., Lopez R., Tanaka C. & Altenbach S. 2006. Differential accumulation of sulfurrich and sulfur-poor wheat flour proteins is affected by temperature and mineral nutrition during grain development. J. Cereal Sci. 44: 101–112.

    Article  CAS  Google Scholar 

  • DuPont F., William J., Charlene K. & Ronald C. 1998. BiP, HSP70, NDK and PDI in wheat endosperm. I. Accumulation of mRNA and protein during grain development. Physiol. Plantarum 103: 70–79.

    Article  CAS  Google Scholar 

  • Ellgaard L. & Ruddock L. 2005. The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep. 6: 28–32.

    Article  PubMed  CAS  Google Scholar 

  • Ferrari D. & Soling H. 1999. The protein disulphide-isomerase family: unravelling a string of folds. Biochem. J. 339: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Fonseca C., Soiffer R., Ho V., Vanneman M., Jinushi M., Ritz J., Neuberg D., Stone R., DeAngelo D. & Dranoff G. 2009. Protein disulfide isomerases are antibody targets during immunemediated tumor destruction. Blood 113: 1681–1688.

    Article  PubMed  Google Scholar 

  • Freedman R., Klappa P. & Ruddock L. 2002. Protein disulfide isomerases exploit synergy between catalytic and specific binding domains. EMBO J. 3: 136–140.

    Article  CAS  Google Scholar 

  • Fu X., Wang P. & Zhu B. 2008. Protein disulfide isomerase is a multifunctional regulator of estrogenic status in target cells. J. Steroid Biochem. Mol. Biol. 112: 127–137.

    Article  PubMed  CAS  Google Scholar 

  • Gao F., Zhou Y., Zhu W., Li X., Fan L. & Zhang G. 2009. Proteomic analysis of cold stress responsive proteins in Thellungiella rosette leaves. Planta 230: 1033–1046.

    Article  PubMed  CAS  Google Scholar 

  • Gavel Y. & von Heijne G. 1990. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 261: 455–458.

    Article  PubMed  CAS  Google Scholar 

  • Grimwade B., Tatham A.S., Freedman R.B., Shewry P.R. & Napier J.A. 1996. Comparison of the expression patterns of genes coding for wheat gluten proteins and proteins involved in the secretory pathway in developing caryopses of wheat. Plant Mol. Biol. 30: 1067–1073.

    Article  PubMed  CAS  Google Scholar 

  • Gruber C., Cemazar M., Mechler A., Martin L. & Craik D. 2009. Biochemical and biophysical characterization of a novel plant protein disulfide isomerase. Biopolymers 92: 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Grynberg A., Nicolas J. & Drapron R. 1977. Presence of a protein disulfide isomerase (EC 5.3.4.1) in wheat germ. C. R. Acad. Sci. Hebd. Seances Acad. Sci. D Sci. Nat. 284: 235–238.

    CAS  Google Scholar 

  • Gutierrez-Marcos J., Roberts M., Campbell E. & Wray J. 1996. Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichia coli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and “APS reductase” activity. Proc. Natl. Acad. Sci. USA 93: 13377–13382.

    Article  PubMed  CAS  Google Scholar 

  • Hayano T. & Kikuchi M. 1995 Cloning and sequencing of the cDNA encoding human P5. Gene 164: 377–378.

    Article  PubMed  CAS  Google Scholar 

  • He Z., Li L. & Luan S. 2004. Immunophilins and parvulins. Superfamily of peptidyl prolyl isomerases in Arabidopsis. Plant Physiol. 134: 1248–1267.

    Article  PubMed  CAS  Google Scholar 

  • Herman E. & Schmidt M. 2004. Endoplasmic reticulum to vacuole trafficking of endoplasmic reticulum bodies provides an alternate pathway for protein transfer to the vacuole. Plant Physiol. 136: 3440–3446.

    Article  PubMed  CAS  Google Scholar 

  • Holmgren A. 1985. Thioredoxin. Annu. Rev. Biochem. 54: 237–271.

    Article  PubMed  CAS  Google Scholar 

  • Horibe T., Kikuchi M. & Kawakami K. 2008. Interaction of human protein disulfide isomerase and human P5 with drug compounds: analysis using biosensor technology. Process Biochem. 43: 1330–1337.

    Article  CAS  Google Scholar 

  • Houston N., Fan C., Xiang Q. & Schulze J. 2005. Phylogenetic analyses identify 10 classes of the protein disulfide isomerase family in plants, including single-domain protein disulfide isomerase-related proteins. Plant Physiol. 137: 762–778.

    Article  PubMed  CAS  Google Scholar 

  • Irsigler A., Costa M., Zhang P., Reis P., Dewey R., Boston R. & Fontes E. 2007. Expression profiling on soybean leaves reveals integration of ER- and osmotic stress pathways. BMC Genom. 8: 431.

    Article  Google Scholar 

  • Iwakasi K., Kamauchi S., Wadahama H., Ishimoto M., Kawada T. & Urade R. 2009. Molecular cloning and characterisation of soybean protein disulphide isomerase family proteins with nonclassic active centre motifs. FEBS J. 276: 4130–4141.

    Article  Google Scholar 

  • Jackson M., Nilsson T. & Peterson P. 1990. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 9: 3153–3162.

    PubMed  CAS  Google Scholar 

  • Jacquot J., Gelhaye E., Rouhier N., Corbier C., Didierjean C. & Aubry A. 2002. Thioredoxins and related proteins in photosynthetic organisms: molecular basis for thiol dependent regulation. Biochem. Pharmacol. 64: 1065–1069.

    Article  PubMed  CAS  Google Scholar 

  • Jeong W., Lee D., Park S. & Rhee S. 2008. ERp16, an endoplasmic reticulum-resident thiol-disulfide oxidoreductase. J. Biol. Chem. 283: 25557–25566.

    Article  PubMed  CAS  Google Scholar 

  • Johnson J.C., Appels R. & Bhave M. 2006. The PDI genes of wheat and their syntenic relationship to the esp2 locus of rice. Funct. Integr. Genom. 6: 104–121.

    Article  CAS  Google Scholar 

  • Johnson J.C. & Bhave M. 2004. Molecular characterisation of the protein disulphide isomerase genes of wheat. Plant Sci. 167: 397–410.

    Article  CAS  Google Scholar 

  • Johnson J.C., Clark B. & Bhave M. 2001. Isolation and characterisation of cDNAs encoding protein disulphide isomerases and cyclophilins in wheat. J. Cereal Sci. 34: 159–171.

    Article  CAS  Google Scholar 

  • Kamauchi S., Nakatani H., Nakano C. & Urade R. 2005. Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana. FEBS J. 272: 3461–3476.

    Article  PubMed  CAS  Google Scholar 

  • Kamauchi S., Wadahama H., Iwasaki K., Nakamoto Y., Nishizawa K., Ishimoto M., Kawada T. & Urade R. 2008. Molecular cloning and characterization of two soybean protein disulfide isomerases as molecular chaperones for seed storage proteins. FEBS J. 275: 2644–2658.

    Article  PubMed  CAS  Google Scholar 

  • Kemmink J., Darby N., Dijkstra K., Nilges M. & Creighton T. 1997. The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Curr. Biol. 7: 239–245.

    Article  PubMed  CAS  Google Scholar 

  • Kim Y., Kang K., Kim I., Lee Y., Oh C., Ryoo J., Jeong E. & Ahn K. 2009. Molecular mechanisms of MHC class I-antigen processing: redox considerations. Antioxid. Redox. Signal 11: 907–936.

    Article  PubMed  CAS  Google Scholar 

  • Klappa P., Ruddock L.W., Darby N. & Freedman R.B. 1998. The b’ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO J. 17: 927–935.

    Article  PubMed  CAS  Google Scholar 

  • Laudencia C., Stamova B., Lazo G., Cui X. & Anderson O. 2006. Analysis of the wheat endosperm transcriptome. J. Appl. Genet. 47: 287–302.

    Article  Google Scholar 

  • Lee J.E. & Hofhaus G. & Lisowsky T. 2000. Erv1p from Saccharomyces cerevisiae is a FAD-linked sulfhydryl oxidase. FEBS J. 477: 62–66.

    Article  CAS  Google Scholar 

  • Li C.P. & Larkins B.A. 1996. Expression of protein disulfide isomerase is elevated in the endosperm of the maize floury-2 mutant. Plant Mol. Biol. 30: 873–882.

    Article  PubMed  CAS  Google Scholar 

  • Liu F., Rong Y., Zeng L., Zhang X. & Han Z. 2003. Isolation and characterization of a novel human thioredoxin-like gene hTLP19 encoding a secretory protein. Gene 315: 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Lu D. & Christopher D. 2006. Immunolocalization of a protein disulfide isomerase to Arabidopsis thaliana chloroplasts and its association with starch biogenesis. Int. J. Plant Sci. 167: 1–9.

    Article  CAS  Google Scholar 

  • Lu D. & Christopher D. 2008a. Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana. Mol. Genet. Genom. 280: 199–210.

    Article  CAS  Google Scholar 

  • Lu D. & Christopher D. 2008b. Light enhances the unfolded protein response as measured by BiP2 gene expression and the secretory GFP-2SC marker in Arabidopsis. Physiol. Plant. 134: 360–368.

    Article  PubMed  CAS  Google Scholar 

  • Lu D. & Christopher D. 2008c. The effect of irradiance and redoxmodifying reagents on the 52 kDa protein disulfide isomerase of Arabidopsis chloroplasts. Biol. Plant. 52: 42–48.

    Article  CAS  Google Scholar 

  • Manukyan D., Bruehl M., Massberg S. & Engelmann B. 2008. Protein disulfide isomerase as a trigger for tissue factordependent fibrin generation. Thromb. Res. 122: 19–22.

    Article  Google Scholar 

  • Martinez I. & Chrispeels M. 2003. Genomic analysis of the unfolded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell 15: 561–576.

    Article  PubMed  CAS  Google Scholar 

  • Mogelsvang S. & Simpson D.J. 1998. Changes in the levels of seven proteins involved in polypeptide folding and transport during endosperm development of two barley genotypes differing in storage protein localisation. Plant Mol. Biol. 36: 541–552.

    Article  PubMed  CAS  Google Scholar 

  • Monnat J., Neuhaus E., Pop M., Ferrari D., Kramer B. & Soldati T. 2000. Identification of a novel saturable endoplasmic reticulum localisation mechanism mediated by the C-terminus of a Dictyostelium protein disulphide isomerase. Mol. Biol. Cell. 11: 3469–3484.

    PubMed  CAS  Google Scholar 

  • Nakamura T. & Lipton S. 2009. Cell death: protein misfolding and neurodegenerative diseases. Apoptosis 14: 455–468.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen Van D., Wallis K., Howard M., Haapalainen A., Salo K., Saaranen M., Sidhu A., Wierenga R., Freedman R., Ruddock L. & Williamson R. 2008. Alternative conformations of the x region of human protein disulphide-isomerase modulate exposure of the substrate binding b’ domain. J. Mol. Biol. 383: 1144–1155.

    Article  PubMed  CAS  Google Scholar 

  • Noiva R. 1999. Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Seminars Cell. Dev. Biol. 10: 481–493.

    Article  CAS  Google Scholar 

  • Ondzighi C., Christopher D., Cho E., Chang S. & Staehelin L. 2008. Arabidopsis protein disulfide isomerase-5 inhibits cysteine proteases during trafficking to vacuoles before programmed cell death of the endothelium in developing seeds. Plant Cell 20: 2205–2220.

    Article  CAS  Google Scholar 

  • Price E.R., Zydowsky L.D., Jin M.J., Baker C.H., McKeon F.D. & Walsh C.T. 1991. Human cyclophilin B: a second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence. Proc. Natl. Acad. Sci. USA 88: 1903–1907.

    Article  PubMed  CAS  Google Scholar 

  • Prior A., Uhrig J., Heins L., Wiesmann A., Lillig C., Stoltze C., Soll J. & Schwenn J. 1999. Structural and kinetic properties of adenylyl sulfate reductase from Catharanthus roseus cell cultures. Biochim. Biophys. Acta 1430: 25–38.

    Article  PubMed  CAS  Google Scholar 

  • Ray S., Anderson J., Urmeev F. & Goodwin S. 2003. Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Mol. Biol. 53: 701–714.

    Article  PubMed  CAS  Google Scholar 

  • Roden L.T., Miflin B.J. & Freedman R.B. 1982. Protein disulphide isomerase is located in the endoplasmic reticulum of developing wheat endosperm. FEBS Lett. 138: 121–124.

    Article  CAS  Google Scholar 

  • Serrato A., Guilleminot J., Meyer Y. & Vignols F. 2008. AtCXXS: atypical members of the Arabidopsis thaliana thioredoxin h family with a remarkably high disulfide isomerase activity. Physiol. Plant. 133: 611–622.

    Article  PubMed  CAS  Google Scholar 

  • Shewry P.R. & Halford N.G. 2002. Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53: 947–958.

    Article  PubMed  CAS  Google Scholar 

  • Shimoni Y., Segal C., Zhu X.Z. & Calili C. 1995a. Nucleotide sequence of a wheat cDNA encoding protein disulfide isomerase. Plant Physiol. 107: 281.

    Article  PubMed  CAS  Google Scholar 

  • Shimoni Y., Zhu X., Levanony H., Segal G. & Galili G. 1995b. Purification, characterization, and intracellular localization of glycosylated protein disulfide isomerase from wheat grains. Plant Physiol. 108: 327–335.

    Article  PubMed  CAS  Google Scholar 

  • Shorrosh B. & Dixon R. 1992. Molecular characterisation and expression of an alfalfa protein with sequence similarity to mammalian ERp72, a glucose-regulated endoplasmic reticulum protein containing active site sequences of protein disulphide isomerase. Plant J. 2: 51–58.

    PubMed  CAS  Google Scholar 

  • Sliskovic I., Raturi A. & Mutus B. 2005. Characterization of the S-denitrosation activity of protein disulfide isomerase. J. Biol. Chem. 280: 8733–8741.

    Article  PubMed  CAS  Google Scholar 

  • Takemoto Y., Coughlan S.J., Okita T.W., Satoh H., Ogawa M. & Kumamaru T. 2002. The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol. 128: 1212–1222.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe C., Hoober K., Raje S., Glynn N., Burnside J., Turi G. & Coppock D. 2002. Sulfhydryl oxidases: emerging catalysts of protein disulfide bond formation in eukaryotes. Arch. Biochem. Biophys. 405: 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Tosi P., Parker M., Gritsch C., Carzaniga R., Martin B. & Shewry S. 2009. Trafficking of storage proteins in developing grain of wheat. J. Exp. Bot. 60: 979–991.

    Article  PubMed  CAS  Google Scholar 

  • Urade R. 2007. Cellular response to unfolded proteins in the endoplasmic reticulum of plants. FEBS J. 274: 1152–1171.

    Article  PubMed  CAS  Google Scholar 

  • Ushioda R., Hoseki J., Araki K., Jansen G., Thomas D. & Nagata K. 2008. ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321: 569–572.

    Article  PubMed  CAS  Google Scholar 

  • Vitale A. & Ceriotti A. 2004. Protein quality control mechanisms and protein storage in the endoplasmic reticulum. A conflict of interests? Plant Physiol. 136: 3420–3426.

    CAS  Google Scholar 

  • Wadahama H., Kamauchi S., Ishimoto M., Kawada T. & Urade R. 2007. Protein disulfide isomerase family proteins involved in soybean protein biogenesis. FEBS J. 274: 687–703.

    Article  PubMed  CAS  Google Scholar 

  • Wadahama H., Kamauchi S., Nakamoto Y., Nishizawa K., Ishimoto M., Kawada T. & Urade R. 2008. A novel plant protein disulfide isomerase family homologous to animal P5 — molecular cloning and characterization as a functional protein for folding of soybean seed-storage proteins. FEBS J. 275: 399–410.

    Article  PubMed  CAS  Google Scholar 

  • Wang H., Boavida L., Ron M. & McCormick S. 2008. Truncation of a protein disulfide isomerase, PDIL2-1, delays embryo sac maturation and disrupts pollen tube guidance in Arabidopsis thaliana. Plant Cell 20: 3300–3311.

    Article  PubMed  CAS  Google Scholar 

  • Wells W., Xu D., Yang Y. & Rocque P. 1990. Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J. Biol. Chem. 265: 15361–15364.

    PubMed  CAS  Google Scholar 

  • Wilkinson B. & Gilbert H. 2004. Protein disulfide isomerase. Biochim. Biophys. Acta 1699: 35–44.

    PubMed  CAS  Google Scholar 

  • Woycechowsky K, Raines R. 2000. Native disulfide bond formation in proteins. Curr. Opin. Chem. Biol. 4: 533–539.

    Article  PubMed  CAS  Google Scholar 

  • Xu Z., Ueda K., Masuda K., Ono M. & Inoue M. 2002. Molecular characterisation of a novel protein disulphide isomerase in carrot. Gene 284: 225–231.

    Article  PubMed  CAS  Google Scholar 

  • Yang K., Xia C., Liu X., Dou X., Wang W., Chen L., Zhang X., Xie L., He L., Ma X. & Ye D. 2009. A mutation in the Thermosensitive Male Sterile 1, encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophyte male sterility in Arabidopsis. Plant J. 57: 870–882.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Bhave.

Additional information

Electronic supplementary material. The online version of this article (DOI: 10.2478/s11756-011-0164-5) contains supplementary material, which is available to authorized users.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, H., Dorse, S. & Bhave, M. In silico identification and analysis of the protein disulphide isomerases in wheat and rice. Biologia 67, 48–60 (2012). https://doi.org/10.2478/s11756-011-0164-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0164-5

Key words

Navigation