Skip to main content

Advertisement

Log in

Novel mutations in katG gene of a clinical isolate of isoniazid-resistant Mycobacterium tuberculosis

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Most of isoniazid-resistant Mycobacterium tuberculosis evolved due to mutation in the katG gene encoding catalase-peroxidase. A set of new mutations, namely T1310C, G1388T, G1481A, T1553C, and A1660G, which correspond to amino acid substitutions of L437P, R463L, G494D, I518T, and K554E, in the katG gene of the L10 clinical isolate M. tuberculosis was identified. The wild-type and mutant KatG proteins were expressed in Escherichia coli BL21(DE3) as a protein of 80 kDa based on sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis. The mutant KatG protein exhibited catalase and peroxidase activities of 4.6% and 24.8% toward its wild type, respectively, and retained 19.4% isoniazid oxidation activity. The structure modelling study revealed that these C-terminal mutations might have induced formation of a new turn, perturbing the active site environment and also generated new intramolecular interactions, which could be unfavourable for the enzyme activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

INH:

isoniazid

LB:

Luria-Bertani

MDR:

multidrug resistant

SDS-PAGE:

sodium dodecyl sulphatepolyacrylamide gel electrophoresis

TB:

tuberculosis

t-BHP:

tert-butylhydroperoxide

References

  • Ando H., Yuji K., Toshinori S., Emiko T., Seiya K., Toru M. & Teruo K. 2010. Identification of katG mutations associated with high-level isoniazid resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 54: 1793–1799.

    Article  PubMed  CAS  Google Scholar 

  • Atalay F.M.D., Nejat A., Dilek E.T., Derya A., Pinar E. & Yurdanur E.A.N. 2004. Catalase-peroxidase gene (KatG) deletion in isoniazid resistant strains of Mycobacterium tuberculosis. Turkiye Klinikleri J. Med. Sci. 24: 243–246.

    CAS  Google Scholar 

  • Baker R.D., Cook C.A. & Goodwin D.C. 2006. Catalaseperoxidase active site restructuring by a distant and “inactive” domain. Biochemistry 45: 7113–7121.

    Article  PubMed  CAS  Google Scholar 

  • Bertrand T., Eady A.J.N., Jones N.J., Jesmin., Nagy M.J., Gregoire J.N., Rave L.E. & Brown A.K. 2004. Crystal structure of Mycobacterium tuberculosis catalase-peroxidase. J. Biol. Chem. 279: 38991–38999.

    Article  PubMed  CAS  Google Scholar 

  • Case D.A., Darden T.A., Cheatham T.E., Simmerling C.L., Wang J., Duke R.E., Luo R., Merz K.M., Pearlma D.A., Crowley M., Walker R.C., Wang W., Wang B., Hayik S., Roitberg A., Seabra G., Wong K.F., Paesani F., Wu X., Brozel S., Tsui V., Gohlke H., Yang L., Tan C., Mongan J., Homak V., Cui G., Beroza P., Mathews D.H., Schafmeister C., Ross W.S. & Kollman P.A. 2006. AMBER 9. University of California, San Fancisco.

    Google Scholar 

  • Cook C.O. 2009. Role of distant, intrasubunit residues in catalase-peroxidase catalysis: tracing the role of gene duplication and fusion in enzyme structure and function. PhD-Thesis, Auburn University, Alabama, USA; http://etd.auburn.edu/etd/handle/10415/1733?show=full.

    Google Scholar 

  • DeLano W.L. 2002. The PyMOL molecular graphics system. De-Lano Scientific, San Carlos, CA.

    Google Scholar 

  • Devito J.A. & Morris S. 2003. Exploring the structure and function of the mycobacterial KatG protein using trans-dominant mutants. Antimicrob. Agents Chemother. 47: 188–195.

    Article  PubMed  CAS  Google Scholar 

  • Ernst J.D., Giraldina T.N. & Niaz B. 2007. Genomics and the evolution, pathogenesis, and diagnosis of tuberculosis. J. Clin. Invest. 117: 1738–1745.

    Article  PubMed  CAS  Google Scholar 

  • Gordon C. & Alimuddin Z. 2008. Mason’s tropical diseases. Saunders Elsevier, Ltd., London, 1800 pp.

    Google Scholar 

  • Lee A.S.G., Teo A.S.M. & Wong S.Y. 2001. Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 45: 2157–2159.

    Article  PubMed  CAS  Google Scholar 

  • Maiti R., Van Domselaar G.H., Zhang H. & Wishart D.S. 2004. SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res. 32(Web-server Issue): W590–W594.

    Article  PubMed  CAS  Google Scholar 

  • Massi M.N., Wahyuni S., Halik H., Anita., Yusuf I., Leong F.J., Dick T. & Phyu S. 2011. Drug resistance among tuberculosis patients attending diagnostic and treatment centres in Makassar, Indonesia. Int. J. Tuberc. Lung Dis. 15: 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Mdluli K., Slayden R.A., Zhu Y., Ramaswamy S., Pan X., Mead D., Crane D.D., Musser J.M. & Barry C.E. 1998. Inhibition of a Mycobacterium tuberculosis β-ketoacyl ACP synthase by isoniazid. Science 280: 1607–1610.

    Article  PubMed  CAS  Google Scholar 

  • Mo L., Zhang W., Wang J., Weng X.H., Chen S., Shao L.Y., Pang M.Y. & Chen Z.W. 2004. Three-dimensional model and molecular mechanism of Mycobacterium tuberculosis catalase-peroxidase (KatG) and isoniazid-resistant KatG mutants. Microb. Drug Resist. 10: 269–279.

    Article  PubMed  CAS  Google Scholar 

  • Noviana H., Nurachman Z., Ramdani M. & Noer A.S. 2007. Multiplex PCR for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis isolated from Bandung, Indonesia. Microbiology (Indonesia) 1: 114–118.

    Article  Google Scholar 

  • Patti P.F. & Bonet-Maury P. 1953. Methode colorimetrique pour le dosage de la catalase. Bull. Soc. Chem. Biol. 35: 1177–1180.

    CAS  Google Scholar 

  • Pretorius G.S., Van Helden P.D., Sirgel F., Eisenach K.D. & Victor T.C. 1995. Mutations in katG gene sequences in isoniazidresistant clinical isolates of Mycobacterium tuberculosis are rare. Antimicrob. Agents Chemother. 39: 2276–2281.

    PubMed  CAS  Google Scholar 

  • Rouse D.A., Devito J.A., Li Z., Byer H. & Morris S.L. 1996. Site-directed mutagenesis of the katG gene of Mycobacterium tuberculosis: effects on catalase-peroxidase activities and isoniazid resistance. Mol. Microbiol. 22: 583–592.

    Article  PubMed  CAS  Google Scholar 

  • Saint J.B., Souchon H., Wilming M., Johnsson K., Alzari P.M. & Cole S.T. 1999. Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatG, from Mycobacterium tuberculosis. J. Biochem. 338: 753–760.

    Article  Google Scholar 

  • Sambrook J.F. & Maniatis T. 1989. Molecular Cloning Laboratory Manual. Cold Spring Harbour Laboratory Press, Cold Spring Harbour Laboratory, USA, 179 pp.

    Google Scholar 

  • Schwede T., Kopp J., Guex N. & Peitsch M.C. 2003. SWISSMODEL: an automated protein homology-modelling server. Nucleic Acids Res. 31: 3381–3385.

    Article  PubMed  CAS  Google Scholar 

  • Shoeb A.H., Bernard U.B., Ottolenghi Jr., A.C. & Merola A.J. 1985. Evidence for the generation of active oxygen by isoniazid treatment of extracts of Mycobacterium tuberculosis H37Ra. Antimicrob. Agents Chemother. 27: 404–407.

    PubMed  CAS  Google Scholar 

  • Wei J., Benfang L., James M.M. & Shiao C.T.C. 2003. Isoniazid activation defects in recombinant Mycobacterium tuberculosis catalase-peroxidase (KatG) mutants evident in inhA inhibitor production. Antimicrob. Agents Chemother. 47: 670–675.

    Article  PubMed  CAS  Google Scholar 

  • Wengenack N.L., Brian D.L., Preston J.H., James R.U., Gudrun S.L.R., Leslie H., Glenn D.R., Franklin R.C., Patrick J.B., Kenton R.R., John J.B. & Frank R. 2004. Purification and characterization of Mycobacterium tuberculosis KatG, KatG(S315T), and Mycobacterium bovis KatG(R463L). Protein Expr. Purif. 24: 232–243.

    Article  Google Scholar 

  • Wilming M. & Johnsson K. 2001. Inter- and intramolecular domain interactions of the catalase-peroxidase KatG from M. tuberculosis. FEBS Lett. 509: 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Yu H. 2007. Structural studies of Mycobacterium tuberculosis KatG, an INH drug activator, and Brucella abortus VirB11, an ATPase of type IV translocation system. PhD-Thesis, Texas A&M University, Texas, USA; http://hdl.handle.net/1969.1/ETD-TAMU-1243/.

    Google Scholar 

  • Yu S., Chouchane S. & Magliozzo R.S. 2002. Characterization of the W321F mutant of Mycobacterium tuberculosis catalaseperoxidase KatG. Protein Sci. 11: 58–64.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y., Heym B., Allen B., Young D. & Cole S.T. 1992. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358: 591–593.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dessy Natalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purkan, Ihsanawati, Syah, Y.M. et al. Novel mutations in katG gene of a clinical isolate of isoniazid-resistant Mycobacterium tuberculosis . Biologia 67, 41–47 (2012). https://doi.org/10.2478/s11756-011-0162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0162-7

Key words

Navigation