Skip to main content
Log in

Two-dimensional clinorotation influences cellular morphology, cytoskeleton and secretion of MLO-Y4 osteocyte-like cells

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the effects of the clinostat-simulated weightlessness on biological characteristics of MLO-Y4 osteocyte-like cells. MLO-Y4 cells were incubated for 24 h, then randomly divided into 3 groups and rotated in a clinostat as a model of simulated weightlessness for 12 h, 24 h and 48 h. The morphology, cytoskeleton, and secretion of soluble molecules of MLO-Y4 cells were observed and detected. The results show that clinostat culture affects the number of dendrites/cell, cytoskeleton distribution, and secretion of nitric oxide and prostaglandin E2 in MLO-Y4 cells. These results may provide some clue to explore the cellular mechanism of bone loss caused by weightlessness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALP:

alkaline phosphatase

2D:

two-dimensional

CS:

calf serum

E:

experimental group

M-CSF:

macrophage colony stimulatory factor

PBS:

phosphate-buffered saline

PGE2:

prostaglandin E2

RC:

horizontal rotation control group

rpm:

revolutions per minute

SC:

stationary control group

SD:

standard deviation

TBS:

Tris buffered saline

References

  • Aguirre J.I., Plotkin L.I., Stewart S.A., Weinstein R.S., Parfitt A.M., Manolagas S.C. & Bellido T. 2006. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J. Bone Miner. Res. 21: 605–615.

    Article  PubMed  Google Scholar 

  • Bakker A.D., Soejima K., Klein-Nulend J. & Burger E.H. 2001. The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J. Biomech. 34: 671–677.

    Article  PubMed  CAS  Google Scholar 

  • Bonewald L.F. 1999. Establishment and characterization of an osteocyte-like cell line, MLO-Y4. J Bone Miner. Metab. 17: 61–65.

    Article  PubMed  CAS  Google Scholar 

  • Bonewald L.F. 2006. Mechanosensation and transduction in osteocytes. Bonekey Osteovision 3: 7–15.

    PubMed  Google Scholar 

  • Bonewald L.F. 2007. Osteocytes as dynamic multifunctional cells. Ann. N. Y. Acad. Sci. 1116: 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Collet P., Uebelhart D., Vico L., Moro L., Hartmann D., Roth M. & Alexandre C. 1997. Effects of 1- and 6-month spaceflight on bone mass and biochemistry in two humans. Bone 20: 547–551.

    Article  PubMed  CAS  Google Scholar 

  • Doty S.B. 2004. Space flight and bone formation. Materwiss. Werksttech. 35: 951–961.

    Article  PubMed  CAS  Google Scholar 

  • Dai Z.Q., Wang R., Ling S.K., Wan Y.M. & Li Y.H. 2007. Simulated microgravity inhibits the proliferation and osteogenesis of rat bone marrow mesenchymal stem cells. Cell Prolif. 40: 671–684.

    Article  PubMed  CAS  Google Scholar 

  • Di S.M., Qian A.R., Qu L.N., Zhang W., Wang Z., Li Y.H., Ren H.G. & Shang P. 2011. Graviresponses of osteocytes under altered gravity. Adv. Space Res. 8: 1161–1166.

    Article  Google Scholar 

  • Hughes-Fulford M. 2001. Changes in gene expression and signal transduction in microgravity. J. Gravit. Physiol. 8: 1–5.

    Google Scholar 

  • Hughes-Fulford M., Rodenacker K. & Jütting U. 2006. Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity. J. Cell. Biochem. 99: 435–449.

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni R.N., Bakker A.D., Everts V. & Klein-Nulend J. 2010. Inhibition of osteoclastogenesis by mechanically loaded osteocytes: involvement of MEPE. Calcif. Tissue Int. 87: 461–468.

    Article  PubMed  CAS  Google Scholar 

  • Landis W.J., Hodgens K.J., Block D., Toma C.D. & Gerstenfeld L.C. 2000. Spaceflight effects on cultured embryonic chick bone cells. J. Bone Miner. Res. 15: 1099–1112.

    Article  PubMed  CAS  Google Scholar 

  • Makihira S., Kawahara Y., Yuge L., Mine Y. & Nikawa H. 2008. Impact of the microgravity environment in a 3-dimensional clinostat on osteoblast- and osteoclast-like cells. Cell. Biol. Int. 32: 1176–1181.

    Article  PubMed  CAS  Google Scholar 

  • McGarry J.G., Klein-Nulend J. & Prendergast P.J. 2005. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts. Biochem. Biophys. Res. Commun. 330: 341–348.

    Article  PubMed  CAS  Google Scholar 

  • Noble B.S., Peet N., Stevens H.Y., Brabbs A., Mosley J.R., Reilly G.C., Reeve J., Skerry T.M. & Lanyon L.E. 2003. Mechanical loading: biphasic osteocyte survival and targeting of osteoclasts for bone destruction in rat cortical bone. Am. J. Physiol. Cell Physiol. 284: C934–C943.

    PubMed  CAS  Google Scholar 

  • Ponik S.M., Triplett J.W. & Pavalko F.M. 2007. Osteoblasts and osteocytes respond differently to oscillatory and unidirectional fluid flow profiles. J. Cell. Biochem. 100: 794–807.

    Article  PubMed  CAS  Google Scholar 

  • Qian A., Di S., Gao X., Zhang W., Tian Z., Li J., Hu L., Yang P., Yin D. & Shang P. 2009. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment. Acta Biochim. Biophys. Sinica 41: 561–577.

    Article  CAS  Google Scholar 

  • Qian A., Wang L., Gao X., Wang Z., Hu L., Li J.B, Di S. & Shang P. 2011. Diamagnetic levitation causes changes in the morphology, cytoskeleton and focal adhesion proteins in osteocytes. IEEE Trans. Biomed. Eng. (in press); DOI: 10.1109/TBME.2010.2103377.

  • Qian A., Yang P., Hu L., Zhang W., Di S., Wang Z., Gao X. & Shang P. 2010. High magnetic gradient environment causes alterations of cytoskeleton and cytoskeleton associated genes in human osteoblasts cultured in vitro. Adv. Space Res. 46: 687–700.

    Article  CAS  Google Scholar 

  • Qian A., Zhang W., Weng Y., Tian Z., Di S., Yang P., Yin D., Hu L., Wang Z., Xu H. & Shang P. 2008. Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions. Acta Astronautica 63: 929–946.

    Article  Google Scholar 

  • Qu L.N., Che H.H., Liu X.M., Bi L., Xiong J.H., Mao Z.B. & Li Y.H. 2010. Protective effects of flavonoids against oxidative stress induced by simulated microgravity in SH-SY5Y cells. Neurochem. Res. 35: 1445–1454.

    Article  PubMed  CAS  Google Scholar 

  • Rodionova N.V., Oganov V.S. & Zolotova N.V. 2002. Ultrastructural changes in osteocytes in microgravity conditions. Adv. Space Res. 30: 765–770.

    Article  PubMed  CAS  Google Scholar 

  • Rucci N., Rufo A., Alamanou M. & Teti A. 2007. Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio. J. Cell. Biochem. 100: 464–473.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar D., Nagaya T., Koga K., Nomura Y., Gruener R. & Seo H. 2000. Culture in vector-averaged gravity under clinostat rotation results in apoptosis of osteoblastic ROS 17/2.8 cells. J. Bone Miner. Res. 15: 489–498.

    Article  PubMed  CAS  Google Scholar 

  • Saxena R., Pan G. & McDonald J.M. 2007. Osteoblast and osteoclast differentiation in modeled microgravity. Ann. N. Y. Acad. Sci. 1116: 494–498.

    Article  PubMed  CAS  Google Scholar 

  • Skerry T.M. 2008. The response of bone to mechanical loading and disuse: fundamental principles and influences on osteoblast/osteocyte homeostasis. Arch. Biochem. Biophys. 473: 117–123.

    Article  PubMed  CAS  Google Scholar 

  • Tan S.D., Bakker A.D., Semeins C.M., Kuijpers-Jagtman A.M. & Klein-Nulend J. 2008. Inhibition of osteocyte apoptosis by fluid flow is mediated by nitric oxide. Biochem. Biophys. Res. Commun. 369: 1150–1154.

    Article  PubMed  CAS  Google Scholar 

  • Verborgt O., Gibson G.J. & Schaffler M.B. 2000. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J. Bone Miner. Res. 15: 60–67.

    Article  PubMed  CAS  Google Scholar 

  • White R.J. & Averner M. 2001. Humans in space. Nature 409: 1115–1118.

    Article  PubMed  CAS  Google Scholar 

  • Zaman G., Pitsillides A.A., Rawlinson S.C.F., Suswillo R.F.L., Mosley J.R., Cheng M.Z., Platts L.A.M., Hukkanen M., Polak J.M. & Lanyon L.E. 1999. Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J. Bone Miner. Res. 14: 1123–1131.

    Article  PubMed  CAS  Google Scholar 

  • Zerath E., Holy X., Roberts S.G., Andre C., Renault S., Hott M. & Marie P.J. 2000. Spaceflight inhibits bone formation independent of corticosteroid status in growing rats. J. Bone Miner. Res. 15: 1310–1320.

    Article  PubMed  CAS  Google Scholar 

  • Zhang K., Barragan-Adjemian C., Ye L., Kotha S., Dallas M., Lu Y., Zhao S., Harris M., Harris S.E., Feng J.Q. & Bonewald L.F. 2006. E11/gp38 selective expression in osteocytes: regulation by mechanical strain and role in dendrite elongation. Mol. Cell. Biol. 26: 4539–4552.

    Article  PubMed  CAS  Google Scholar 

  • Zhao S., Zhang Y.K., Harris S., Ahuja S.S. & Bonewald L.F. 2002. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J. Bone Miner. Res. 17: 2068–2079.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Shang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Wu, J., Weng, Y. et al. Two-dimensional clinorotation influences cellular morphology, cytoskeleton and secretion of MLO-Y4 osteocyte-like cells. Biologia 67, 255–262 (2012). https://doi.org/10.2478/s11756-011-0161-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0161-8

Key words

Navigation