Skip to main content
Log in

Response surface methodology for the optimization of α-amylase production by Streptomyces sp. ML12 using agricultural byproducts

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Amylases constitute one of the most important groups of enzymes for commercial use. In the present study, production of α-amylase was optimized using a newly isolated actinobacterial strain from the coral reef environment of the Gulf of Mannar Biosphere Reserve, India. It was identified as Streptomyces sp. ML12 based on chemotaxonomy, cultural and morphological characteristics, carbon source utilization and 16S rRNA gene sequencing. Fermentation variables were selected in accordance with the Plackett-Burman design and were optimized by response surface methodology. Five significant variables (rice bran and wheat bran — both agricultural byproducts, sodium chloride, magnesium sulphate and incubation period) were selected for the optimization via central composite design. The optimal features were rice bran (5.5 g/100 mL), wheat bran (5.3 g/100 mL), sodium chloride (2.8 g/100 mL), magnesium sulphate (1.4 g/100 mL) and 8 days of incubation period. Optimization of the medium with the above tested features increased the amylase yield by 4.4-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCD:

central composite design

ISP:

international Streptomyces project

RSM:

response surface methodology

References

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    PubMed  CAS  Google Scholar 

  • Archana A. & Satyanarayana T. 1997. Xylanase production by thermophilic Bacillus licheniformis A99 in solid-state fermentation. Enzyme Microb. Technol. 21: 12–17.

    Article  CAS  Google Scholar 

  • Ausubel F.M., Brent R., Kingstone R.E., Seidman J.G., Smith J.A. & Struhl K. 1999. Short Protocols in Molecular Biology. John Wiley & Sons, Ltd., New York.

    Google Scholar 

  • Babu K.R. & Satyanarayana, T. 1995. α-Amylase production by thermophilic Bacillus coagulans in solid state fermentation. Process Biochem. 30: 305–309.

    CAS  Google Scholar 

  • Bertoldo C. & Antranikian G. 2001. Amylolytic enzymes from hyperthermophiles. Methods Enzymol. 330: 269–289.

    Article  PubMed  CAS  Google Scholar 

  • Broedel S.E., Papciak S.M. & Jones W.R. 2001. The selection of optimum media formulantions for improved expression of recombinant proteins in E. coli. Technical Bull. 2: 1–6.

    Google Scholar 

  • Chen Q.H., He G.Q. & Mokhtar A.M. 2002. Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme Microb. Technol. 30: 667–672.

    Article  CAS  Google Scholar 

  • Deepak V., Kalishwaralal K., Ramkumarpandian S., Babu S.V., Senthilkumar S.R. & Sangiliyandi G. 2008. Optimization of media composition for Nattokinase production by Bacillus subtilis using response surface methodology. Bioresource Technol. 99: 170–174.

    Article  Google Scholar 

  • Dey G., Mitra A., Banerjee R. & Matri B.R. 2001. Enhanced production of α-amylase by optimization of nutritional constituents using response surface methodology. Biochem. Eng. J. 7: 227–231.

    Article  CAS  Google Scholar 

  • Francis F., Sabu A., Nampoothiri K.M., Ramachandran S., Ghosh S., Szakacs G. & Pandey A. 2003. Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem. Eng. J. 15: 107–115.

    Article  CAS  Google Scholar 

  • Gangadharan D., Sivaramakrishnan S., Nampoothiri K.M. & Pandey A. 2006. Solid culturing of Bacillus amyloliquefaciens for α-amylase production. Food Technol. Biotechnol. 44: 269–274.

    CAS  Google Scholar 

  • Gouda M. & Elbahloul Y. 2008. Statistical optimization and partial characterization of amylases production by halotolerant Penicillium sp. World J. Agric. Sci. 4: 359–369.

    Google Scholar 

  • Hagihara H., Igarashi K., Hayashi Y., Endo K., Ikawa-Kitayama K., Ozaki K., Kawai S. & Ito S. 2001. Novel α-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl. Environ. Microbiol. 67: 1744–1750.

    Article  PubMed  CAS  Google Scholar 

  • Haq I., Ashraf H., Qadeer M.A. & Iqbal J. 2003. Production of α-amylase by Bacillus licheniformis using an economical medium. Bioresource Technol. 87: 57–61.

    Article  Google Scholar 

  • Hasegawa T., Takizawa M. & Tanida S. 1983. A rapid analysis for chemical grouping of aerobic actinomycetes. J. Gen. Appl. Microbiol. 29: 319–322.

    Article  CAS  Google Scholar 

  • Hernandez M.S., Rodriguez M.R., Guerra N.P. & Roses R.P. 2006. Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. J. Food Eng. 73: 93–100.

    Article  CAS  Google Scholar 

  • Hostinova, E. 2002. Amylolytic enzymes produced by the yeast Saccharomycopsis fibuligera. Biologia 57(Suppl. 11): 247–251.

    CAS  Google Scholar 

  • John R.P., Nampoothiri K.M. & Pandey A. 2006. Solid state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbruecki. Process Biochem. 41: 759–763.

    Article  CAS  Google Scholar 

  • Karuppiah V., Aarthi C. & Sivakumar K. 2011. Enhancement of PCR amplification of actinobacterial 16S rRNA gene using an adjuvant, dimethyl sulphoxide. Curr. Sci. 101: 22–23.

    CAS  Google Scholar 

  • Kar S. & Ray R.C. 2007. Partial characterization and optimization of extracellular thermostable Ca2+ inhibited α-amylase production by Streptomyces erumpens MTCC 7317. J. Sci. Ind. Res. 67: 58–64.

    Google Scholar 

  • Khurana S., Kapoor M., Gupta S. & Kuhad R.C. 2007. Statistical optimization of alkaline xylanase production from Streptomyces violaceoruber under submerged fermentation using response surface methodology. Indian J. Microbiol. 47: 144–152.

    Article  CAS  Google Scholar 

  • Kimura M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kundu S., Sahu M.K., Sivakumar K. & Kannan L. 2006. Isolation and characterization of extracellular enzymes producing actinomycetes from the alimentary canal of estuarine fishes. Asian J. Microbiol. Biotechnol. Environ. Sci. 8: 811–815.

    CAS  Google Scholar 

  • Lechevalier M.P. & Lechevalier H. 1970. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 20: 435–443.

    Article  CAS  Google Scholar 

  • Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–429.

    Article  CAS  Google Scholar 

  • Nonomura H. 1974. Key for classification and identification of 458 species of the Streptomycetes included in ISP. J. Ferment. Technol. 52: 78–92.

    Google Scholar 

  • Parekh S., Vinci V.A. & Strobel R.J. 2000. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 54: 287–301.

    Article  PubMed  CAS  Google Scholar 

  • Plackett R.L. & Burman J.P. 1946. The design of optimum maultifactorial experiments. Biometrika 33: 305–325.

    Article  Google Scholar 

  • Poorna C.A. & Prema P. 2007. Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling. Bioresour. Technol. 98: 485–490.

    Article  Google Scholar 

  • Ramachandran S., Patel A.K., Nampoothiri K.M., Chandran S., Szakacs G., Soccol C.R. & Pandey A. 2004. α-Amylase from a fungal culture grown on oil cakes and its properties. Braz. Arch. Biol. Technol. 47: 309–317.

    Article  CAS  Google Scholar 

  • Rao J.L.M. & Satyanarayana T. 2003. Statistical optimization of a high maltose-forming, hyperthermostable and Ca2+-independent α-amylase production by an extreme thermophile Geobacillus thermooleovorans using response surface methodology. J. Appl. Microbiol. 95: 712–718.

    Article  CAS  Google Scholar 

  • Ray C.R. & Kar S. 2009. Statistical optimization of α-amylase production by Bacillus brevis MTCC 7521 in solid-state fermentation using cassava bagasse. Biologia 64: 864–870.

    Article  CAS  Google Scholar 

  • Saban M. T., Elibol M. & Ozer D. 2006. Optimization of growth medium for the production of α-amylase from Bacillus amyloliquefaciens using response surface methodology. J. Chem. Technol. Biotechnol. 81: 618–622.

    Article  Google Scholar 

  • Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Shirling E. B. & Gottlieb D. 1966. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 16: 313–340.

    Article  Google Scholar 

  • Silva C.J.S.M. & Roberto I.C. 2001. Optimization of xylitol production by Candida guilliermondii FTI 20037 using response surface methodology. Process Biochem. 36: 1119–1124.

    Article  CAS  Google Scholar 

  • Sivakumar K., Sahu M.K., Thangaradjou T. & Kannan L. 2007. Review on actinobacteria in India. Indian J. Microbiol. 47: 186–196.

    Article  CAS  Google Scholar 

  • Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Tanyildizi S.M., Elibol M. & Ozer D. 2006.Optimization of growth medium for the production of α-amylase from Bacillus amyloliquefaciens using response surface methodology. J. Chem. Technol. Biotechnol. 81: 618–622.

    Article  CAS  Google Scholar 

  • Techapun C., Poosaran N., Watanabe M. & Sasaki K. 2003. Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochem. 38: 1327–1340.

    Article  CAS  Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. & Higgins D.G. 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  • Wang S.L., Yen Y.H., Shih I.L., Changc A.C., Changa W.T., Wu W.C. & Chai Y.D. 2003. Production of xylanases from rice bran by Streptomyces actuosus A-151. Enzyme Microb. Technol. 33: 917–925.

    Article  CAS  Google Scholar 

  • Yang S.S. & Wang J.Y. 1999. Protease and amylase production of Streptomyces rimosus in submerged and solid state cultivations. Bot. Bull. Acad. Sin. 40: 259–265.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivakumar, K., Karuppiah, V., Sethubathi, G.V. et al. Response surface methodology for the optimization of α-amylase production by Streptomyces sp. ML12 using agricultural byproducts. Biologia 67, 32–40 (2012). https://doi.org/10.2478/s11756-011-0159-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0159-2

Key words

Navigation