Skip to main content
Log in

Growth enhancement of black pepper (Piper nigrum) by a newly isolated Bacillus tequilensis NII-0943

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

A Gram positive, rod-shaped potential strain was selected from the pool of bacterial isolates obtained from the Western Ghats forest (India) on the basis of zone of P-solubilization activity. Identification based on 16S rRNA gene sequence revealed that the strain is of Bacillus species, sharing highest sequence similarity to Bacillus tequilensis NRRL B-41771T (99.5%). Strain NII-0943 was able to produce good amount of indole acetic acid (IAA) and was positive for siderophore production. In addition to IAA and siderophore attributes, strain NII-0943 also possessed the characteristics like Ca3(PO4)2 solubilization and growth in nitrogen-free medium. Seed inoculation with the strain NII-0943 resulted in significantly higher root initiation in black pepper cuttings grown under pots. The contents of nitrogen and phosphorus in both soil and plant were also enhanced significantly in treatments inoculated with these bacterial inocula. Hence, based on this evidence it is proposed that strain NII-0943 could be deployed as a plant growth-promoting inoculant to attain the desired results of bacterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAS:

chrome Azurol-S

IAA:

indole acetic acid

NA:

nutrient agar

NBRIP broth:

National Botanical Research Institute’s phosphate growth medium

PGPB:

plant growth-promoting bacteria

References

  • Ahmad F., Ahmad I. & Khan M.S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbiol. Res. 163: 173–181.

    Article  PubMed  CAS  Google Scholar 

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    PubMed  CAS  Google Scholar 

  • Arshad M. & Frankenberger W.T. 1991. Microbial production of plant hormones. Plant Soil. 133: 1–8.

    Article  CAS  Google Scholar 

  • Bakker A.W. & Schipper B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol. Biochem. 19: 451–457.

    Article  CAS  Google Scholar 

  • Bashan Y. & Holguin G. 1997. Azospirillum/plant relationships: environmental and physiological advances (1990–1996). Can. J. Microbiol. 43: 103–121.

    Article  CAS  Google Scholar 

  • Baudoin E., Nazaret S., Mougel C., Ranjard L. & Moenne-Loccoz Y. 2009. Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biol. Biochem. 41: 409–413.

    Article  CAS  Google Scholar 

  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2010. GenBank. Nucleic Acids Res. 38: D46–D51.

    Article  PubMed  CAS  Google Scholar 

  • Berleth T. & Sachs T. 2001. Plant morphogenesis: long-distance coordination and local patterning. Curr. Opin. Plant Biol. 4: 57–62.

    Article  PubMed  CAS  Google Scholar 

  • Biari A., Gholami A. & Rahmani H.A. 2008. Growth promotion and enhanced nutrient uptake of maize (Zea mays L.) by application of plant growth promoting rhizobacteria in Arid region of Iran. J. Biol. Sci. 8: 1015–1020.

    Article  CAS  Google Scholar 

  • Costacurta A. & Vanderleyden J. 1995. Synthesis of phytohormones by plant-associated bacteria. Crit. Rev. Microbiol. 21: 1–18.

    Article  PubMed  Google Scholar 

  • Cross A.F. & Schlesinger W.H. 1995. A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64: l97–214.

    Article  Google Scholar 

  • Diby P. & Sarma Y.R. 2006. Antagonistic effects of metabolites of Pseudomonas fluorescens strains on the different growth phases of Phytophthora capsici, foot rot pathogen of black pepper (Piper nigrum L.). Arch. Phytopathol. Plant Protect. 39: 113–118.

    Article  Google Scholar 

  • Dobbelaere S., Croonenborghs A., Thys A., Vande Broek A. & Vanderleyden J. 1999. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212: 155–64

    Article  CAS  Google Scholar 

  • El-Tarabily K.A. 2004. Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts. J. Appl. Microbiol. 96: 69–75.

    Article  PubMed  CAS  Google Scholar 

  • Frankenberger W.T., Jr. & Poth M. 1987. Biosynthesis of indole-3-acetic acid by the pine ectomycorrhizal fungus Pisolithus tinctorius. Appl. Environ. Microbiol. 53: 2908–2913.

    PubMed  CAS  Google Scholar 

  • George C. K., Abdullah A. & Chapman K. 2005. Pepper Production Guide for Asia and the Pacific. Joint effort of the International Pepper Community (IPC) and Food and Agricultural Organization of United Nations (FAO). Bangkok, Thailand, IPC, ISBN-979-99118-0-X.

  • Glick B.R. 2005. Modulation of plant ethylene levels by the enzyme ACC deaminase. FEMS Microbiol. Lett. 251: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Glick B.R., Penrose D.M. & Li J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theor. Biol. 190: 63–68.

    Article  PubMed  CAS  Google Scholar 

  • Gordon A.S. & Weber R.P. 1951. Colorimetric estimation of indole acetic acid. Plant Physiol. 26: 192–195.

    Article  PubMed  CAS  Google Scholar 

  • Idris E.E., Iglesias D.J, Talon M. & Borriss R. 2007. Tryptophandependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant Microbe Inter. 20: 619–626.

    Article  CAS  Google Scholar 

  • Jeffries P., Gianinazzi S., Perotto S., Turnau K. & Barea J.J.M. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 37: 1–16.

    Google Scholar 

  • Jukes T.H. & Cantor C.R. 1969. Evolution of protein molecules, pp. 21–132. In: Munro H.N. (ed.) Mammalian Protein Metabolism, vol 3. Academic Press, New York.

    Google Scholar 

  • Kaldorf M. & Ludwig-Muller J. 2000. AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol. Plant. 109: 58–67.

    Article  CAS  Google Scholar 

  • Khalid A., Arshad M. & Zahir Z.A. 2004. Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96: 473–480.

    Article  PubMed  CAS  Google Scholar 

  • Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S., Tamura K. & Nei M. 2004. MEGA3: integrated software or molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150–163.

    Article  PubMed  CAS  Google Scholar 

  • Lambrecht M., Okon Y., Vande Broek A. & Vanderleyden J. 2000. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8: 298–300.

    Article  PubMed  CAS  Google Scholar 

  • Lanyi B. 1987. Classical and rapid identification methods for medically important bacteria. Methods Microbiol. 19: 1–67.

    Article  CAS  Google Scholar 

  • Le Floch G., Rey P., Benizri E., Benhamou N. & Tirilly Y. 2003. The impact of auxin compounds produced by the antagonistic oomycete, Pythium oligandrum or the minor pathogen, Pythium group F on plant growth. Plant Soil 257: 459–470.

    Article  Google Scholar 

  • Marmur J. 1962. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3: 208–218.

    Article  Google Scholar 

  • Miller J.M. & Rhoden D.L. 1991. Preliminary evaluation of Biolog, a carbon source utilization method for bacterial identification. J. Clin. Microbiol. 29: 1143–1147.

    PubMed  CAS  Google Scholar 

  • Murphy J.P. & Riley J.P. 1962. A modified single solution method for the determination of the phosphate in natural waters. Anal. Chim. Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Nautiyal C.S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170: 265–270.

    Article  PubMed  CAS  Google Scholar 

  • Park M., Kin C., Yang J., Lee H., Shin W., Kim S. & Sa T. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol. Res. 160: 127–133.

    Article  PubMed  CAS  Google Scholar 

  • Pikovskaya R.I. 1948. Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Mikrobiologiya 17: 362–370.

    CAS  Google Scholar 

  • Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    PubMed  CAS  Google Scholar 

  • Sarma Y.R. 2003. Global scenario of disease and pest management in black pepper. Int. Pepper News Bull. Ju–Dec 2003: 69–74.

  • Schwyn B. & Neilands J.B. 1987. Universal chemical assay for the detection and determination of siderophore. Anal. Biochem. 160: 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. & Higgins D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882.

    Article  PubMed  CAS  Google Scholar 

  • Tsavkelova E.A., Cherdyntseva T.A. & Netrusov A.I. 2005. Auxin production by bacteria associated with orchid roots. Mikrobiologiya 74: 55–62.

    CAS  Google Scholar 

  • Xie H., Pasternak J.J. & Glick B.R. 1996. Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indole acetic acid. Curr. Microbiol. 32: 67–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed G. Dastager.

Additional information

These authors contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dastager, S.G., Deepa, C.K. & Pandey, A. Growth enhancement of black pepper (Piper nigrum) by a newly isolated Bacillus tequilensis NII-0943. Biologia 66, 801–806 (2011). https://doi.org/10.2478/s11756-011-0105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0105-3

Key words

Navigation