Skip to main content
Log in

Brainstem neuronal populations activated in the model of ovalbumine induced allergic rhinitis in guinea pigs — the c-Fos study

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Central neuronal interactions may contribute to up regulation of cough in subjects with rhinitis. Previously we have shown that noxious stimulation of the nose induces considerable Fos-like immunoreactivity (FLI) in the solitary nuclei and the region of ventral respiratory group and these neurons are involved in the cough pattern generator. Recent study addressed the question, which additional groups are activated in model of trigeminal hyperresponsiveness and whether some of them might also cooperate with cough pattern gating areas. 24 guinea pigs were sensitized with intraperitoneal ovalbumin (OVA) and later were once weekly challenged with intranasal OVA to develop the neural hyperresponsiveness, 12 animals were left unsensitized. The nasal symptom score was evaluated after each challenge. Finally, animals were anaesthetized and the latest challenges with nasal OVA, capsaicin and saline were applied to induce c-Fos expression in designed groups. Following the survival time animals were deeply anaesthetized, exsanguinated, and transcardially perfused with heparinised saline (200 ml) and paraformaldehyde fixation (200 ml). The brainstems were removed, postfixed, and brainstem slices were processed immunohistochemically (c-Fos, Calbiochem, SR). FLI at the level of obex and areas relative to the obex was analyzed. In all groups (excluding the saline group) the FLI was detected bilaterally in the trigeminal complex, nuclei of solitary tract, lateral reticular and nucleus ambiguus. There were no differences between the OVA and capsaicin groups. Count of Fos-positive neurons within the trigeminal complex does not correlate with the magnitude of clinical symptoms, which gradually increased each week in OVA induced model of hyperresponsiveness. Whereas trigeminal hyperresponsiveness contributes to the up-regulation of cough in animal models, it does not induce any additional neuronal FLI at the middle medulla than observed in naive animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonham A.C., Sekizawa S., Chen C.Y. & Joad J.P. 2006. Plasticity of brainstem mechanisms of cough. Respir. Physiol. Neurobiol. 152(3): 312–319. DOI:10.1016/j.resp.2006.02.010

    Article  PubMed  Google Scholar 

  • Brozmanova M., Čalkovsky V., Plevkova J. & Tatar M. 2004. Effects of inhaled corticosteroids on cough in awake guinea pigs with experimental allergic rhinitis — the first experience. J. Physiol. Pharmacol. 55(Suppl. 3): 23–30.

    PubMed  Google Scholar 

  • Brozmanova M., Plevkova J., Tatar M. & Kollarik M. 2008. Cough reflex sensitivity is increased in the guinea pig model of allergic rhinitis. J. Physiol. Pharmacol. 59(Suppl. 6): 153–161.

    PubMed  Google Scholar 

  • Cho Y., Park S., Lee C., Yoo B. & Moon H. 2003. Elevated substance P levels in nasal lavage fluids from patients with chronic nonproductive cough and increased cough sensitivity to inhaled capsaicin. J. Allergy Clin. Immunol. 112(4): 695–701.

    Article  PubMed  CAS  Google Scholar 

  • Curatolo M., Arendt-Nielsen L. & Petersen-Felix S. 2004. Evidence, mechanisms, and clinical implications of central hypersensitivity in chronic pain after whiplash injury. Clin. J. Pain 20(6): 469–476.

    Article  PubMed  Google Scholar 

  • Curran T. & Morgan J. 1995. Fos: an immediate-early transcription factor in neurons. J. Neurobiol. 26(3): 403–412.

    Article  PubMed  CAS  Google Scholar 

  • Hellings P.W. & Hens G. 2009. Rhinosinusitis and the lower airways. Immunol. Allergy Clin. Nort. Am. 29(4): 733–740. DOI: 10.1016/j.iac.2009.08.001

    Article  Google Scholar 

  • Plevkova J., Antosiewicz J., Varechova S., Poliacek I., Tatar M., Jakus J. & Pokorski M. 2009. Convergence of nasal and tracheal neural pathways in modulating the cough response in guinea pigs. J. Physiol. Pharmacol. 60(2): 89–93.

    PubMed  CAS  Google Scholar 

  • Plevkova J., Kollarik M., Brozmanova M., Revallo M., Varechova S. & Tatar M. 2004. Modulation of experimentally-induced cough by stimulation of nasal mucosa in cats and guinea pigs. Respir. Physiol. Neurobiol. 142(2–3): 225–235. DOI: 10.1016/j.resp.2004.06

    Article  PubMed  CAS  Google Scholar 

  • Plevkova J., Poliacek I., Antosiewicz J., Adamkov M., Jakus J. & Tatar M. 2010. Intranasal TRPV1 agonist capsaicin challenge and its effect on c-fos expression in the guinea pig brainstem. Respir. Physiol. Neurobiol. DOI: 10.1016/j.resp.2010.05.015

  • Pratter M.R. & Abouzhaeib W. 2006. Make the cough go away. Chest 129: 1121–1122. DOI: 10.1378/chest.129.5.1121

    Article  PubMed  Google Scholar 

  • Sarin S., Undem B., Sanico A. & Togias A. 2006. The role of the nervous system in rhinitis. J. Allergy Clin. Immunol. 118(5): 999–1016. DOI: 10.1097/ACI.0b013e328334f5de

    Article  PubMed  Google Scholar 

  • Sekizawa S. & Tsubone H. 1996. Nasal receptors responding to noxious chemical irritants. Respir. Physiol. 96: 37–48. DOI: 10.1016/0034-5687(94)90104-X

    Article  Google Scholar 

  • Taylor-Clark T.E., Kollarik M., MacGlashan D. & Undem B. 2005. Nasal sensory nerve populations responding to histamine and capsaicin. J. Allergy Clin. Immunol. 116(6): 1282–1288. DOI: 10.1016/j.jaci.2005.08.043

    Article  PubMed  CAS  Google Scholar 

  • Taylor-Clark T.E., Nassenstein C. & Undem B.J. 2008. Leukotriene D4 increase the excitability of capsaicin sensitive nerves to electrical and chemical stimuli. Brit. J. Pharmacol. 154(6): 1359–1368. DOI: 10.1038/bjp.2008.196

    Article  CAS  Google Scholar 

  • Undem B., Kajekar R., Hunter D. & Myers A. 2000. Neural integration and allergic disease. J. Allergy Clin. Immunol. 106(5 part 2): S213–S220. DOI: 10.1067/mai.2000.110153

    Article  PubMed  CAS  Google Scholar 

  • Underwood S., Foster M., Raeburn D., Bottoms S. & Karlsson J.A. 1995. Time course of antigen — induced airway inflamation in the guinea-pig and its relationship to airway hyperresponsiveness. Eur. Respir. J. 8: 2104–2113. DOI: 10.1183109031936.95.08122104

    Article  PubMed  CAS  Google Scholar 

  • Voitenko L.P. & Marlinskij V.V. 1993. Stereotaxic atlas of the guinea pig brainstem. Neurophysiology 25(1): 52–77. DOI: 10.1007/BF01053633

    Article  Google Scholar 

  • Wallois F., Bodineau L., Macron J.M., Marlot D. & Duron B. 1997. Role of respiratory and non respiratory neurones in the region of the NTS in the elaboration of the sneezing reflex in cat. Brain Res. 768(1–2): 71–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Plevková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plevková, J., Poliaček, I., Adamkov, M. et al. Brainstem neuronal populations activated in the model of ovalbumine induced allergic rhinitis in guinea pigs — the c-Fos study. Biologia 66, 922–927 (2011). https://doi.org/10.2478/s11756-011-0096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0096-0

Key words

Navigation