, Volume 66, Issue 4, pp 618–625 | Cite as

Induction of Gentiana cruciata hairy roots and their secondary metabolites

  • Sadiye HaytaEmail author
  • Aynur Gurel
  • Ismail Hakkı Akgun
  • Filiz Altan
  • Markus Ganzera
  • Bahattin Tanyolac
  • Erdal Bedir
Section Cellular and Molecular Biology


Gentiana cruciata L. (cross gentian) is a medicinal and ornamental plant. The root extracts of this species are known to exhibit many curative properties. The natural Gentiana populations are exposed to great danger because of their uncontrolled usage. In this study, hairy roots from Gentiana cruciata L. stem and leaf explants belonging to three different clones were induced by inoculation with four different Agrobacterium rhizogenes wild strains namely A4, 15834, 8196 and R1000. Induction of the root transformation was significantly dependent on the explant type used. On the other hand, the genotype and bacterial strain had no significant effect on hairy root formation. Hairy root formation percentages of the explants varied between 5.6–33.3% in the stem explants, and between 0.0–6.7% in the leaf explants. Transformations of the hairy roots were confirmed by PCR using rolC specific primers, and revealed the absence of contaminating A. rhizogenes with virC primers. Total of twelve hairy root clones were obtained, and their secondary metabolite content was also analyzed by HPLC. Quantitative results exhibited that gentiopicroside was the most abundant compound in all root samples. Furthermore, metabolites such as loganic acid, swertiamarin, and sweroside were also identified and quantified in the samples.

Key words

Gentiana cruciata L. hairy root cultures Agrobacterium rhizogenes secoiridoid-glycosides HPLC 



fresh growth index






MS salts and B5 vitamins


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aberham A., Schwaiger S., Stuppner S. & Ganzera M. 2007. Quantitative analysis of iridoids, secoiridoids, xanthones and xanthone glycosides in Gentiana lutea L. roots by RP-HPLC and LC-MS. J. Pharmaceut. Biomed. 45: 437–442.CrossRefGoogle Scholar
  2. Akramian M., Tabatabaei S.M.F & Mirmasou M. 2008. Virulence of different strains of Agrobacterium rhizogenes on genetic transformation of four Hyoscyamus species. American-Eurasian J. Agric. Environ. Sci. 3: 759–763.Google Scholar
  3. Ando H., Hiral Y., Fuji M., Hori Y., Fukumur M., Niiho Y., Nakajima Y., Shibata T., Toriizuka K. & Ida Y. 2007. The chemical constituents of fresh Gentiana roots. J. Nat. Med. 61: 269–279.CrossRefGoogle Scholar
  4. Bensaddek L., Villarreal M.L. & Fliniaux M.A. 2008. Induction and growth of hairy roots for the production of medicinal compounds. Electr. J Integr. Biosci. 3: 2–9.Google Scholar
  5. Carnat A., Fraisse D., Carnat A.P., Felgines C., Chaud D. & Lamaison J.L. 2005. Influence of drying mode on iridoid bitter constituent levels in gentian root. J. Sci. Food Agric. 85: 598–602.CrossRefGoogle Scholar
  6. Chaudhuri K.N., Ghosh B., Tepfer D. & Jha S. 2005. Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep. 24: 25–35.PubMedCrossRefGoogle Scholar
  7. Cho H.J., Widholm J.M., Tanaka N.Y., Nakanishi Y. & Murooka Y. 1998. Agrobacterium rhizogenes-mediated transformation and regeneration of the legume Astragalus sinicus (Chinese milk vetch). Plant Sci. 138: 53–65.CrossRefGoogle Scholar
  8. Chueh F.S., Chen C.C., Sagare A.P. & Tsay H.S. 2001. Quantitative determination of secoiridoid glucosides in vitro propagated plants of Gentiana davidii var. formosana by high performance liquid chromatography. Planta Med. 67: 70–73.PubMedCrossRefGoogle Scholar
  9. Davis P.H. 1978. Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Edinburgh, Vol. 6, pp. 176–195.Google Scholar
  10. Doyle J.J. & Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15.Google Scholar
  11. Gamborg O.L., Miller R.A. & Ojima K. 1968. Nutrition requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–159.PubMedCrossRefGoogle Scholar
  12. Giri A. & Narasu M. 2000. Transgenic hairy roots: recent trends and application. Biotechnol. Adv. 18: 1–22.PubMedCrossRefGoogle Scholar
  13. Georgiev M.I., Ludwig-Müller J., Alipieva K. & Lippert A. 2011. Sonication-assisted Agrobacterium rhizogenes-mediated transformation of Verbascum xanthophoeniceum Griseb. for bioactive metabolite accumulation. Plant Cell Rep. 30: 859–866.PubMedCrossRefGoogle Scholar
  14. Georgiev M.I., Pavlov A.I. & Bley T. 2007. Hairy root type plant in vitro systems as sources of bioactive substances. Appl. Microbiol. Biotechnol. 74: 1175–1185.PubMedCrossRefGoogle Scholar
  15. Grant J.E., Dommisse E.M. & Conner A.J. 1991. Gene transfer to plants using Agrobacterium, pp. 50–73. In: Murray D.R. (ed.), Advanced Methods in Plant Breeding and Biotechnology, CAB International, Wallingford.Google Scholar
  16. Hu Z.B. & Du M. 2006. Hairy root and its application in plant genetic engineering. J. Integr. Plant Biol. 48: 121–127.CrossRefGoogle Scholar
  17. Hosokawa K., Matsuki R.M., Oikawa Y. & Yamamura S. 1997. Genetic transformation of gentian using wild-type Agrobacterium rhizogenes. Plant Cell Tiss. Org. Cult. 51: 137–140.CrossRefGoogle Scholar
  18. Jacob A. & Malpathak N. 2005. Manipulation of MS and B5 components for enhancement of growth and salsodine production in hairy root cultures of Solanum khasianum Clarke. Plant Cell Tiss. Org. Cult. 80: 247–257.CrossRefGoogle Scholar
  19. Karmarkar S.H., Keshavachandran R.P., Nazeem A. & Girija D. 2001. Hairy root induction in adapathiyan (Holostemma ada-Kodien K. Schum.). J. Trop. Agric. 39: 102–107.Google Scholar
  20. Kim Y. Wyslouzil B.E. & Weathers P.J. 2002. Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell. Dev. Biol. Plant. 38: 1–10.Google Scholar
  21. Kumar V., Sharma A., Prasad B.C.N. & Gururaj H.B. & Ravishankar G.A. 2006. Agrobacterium rhizogenes mediated genetic transformation resulting in hairy root formation is enhanced by ultrasonication and acetosyringone treatment. Electr. J. Biotechnol. 9: 349–357.Google Scholar
  22. Kuzovkina I.N. & Schneider B. 2006. Genetically transformed root cultures — generation, properties and application in plant sciences. Progr. Bot. 67: 275–324.CrossRefGoogle Scholar
  23. Mishiba K., Nishihara M., Abe Y., Nakatsu T., Kawamura H., Kodama K., Takesawa T. & Abe J. 2006. Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnol. 23: 33–38.CrossRefGoogle Scholar
  24. Mikula A. & Rybczynski J.J. 2001. Somatic embryogenesis of Gentiana genus I. The effect of the preculture treatment and primary explant origin on somatic embryogenesis of Gentiana cruciata (L.), G. pannonica (Scop.), and G. tibetica (King). Acta Physiol. Plant. 23: 15–25.CrossRefGoogle Scholar
  25. Mikula A., Rybczynski J.J., Skierski J., Latkowska M.J. & Fiuk A. 2005. Somatic embryogenesis of Gentiana genus IV. Characterization of Gentiana cruciata and Gentiana tibetica embryogenic cell suspensions, pp. 345–358. In: Hvoslef-Eide A.K. & Preil W. (eds), Liquid Culture Systems for In Vitro Plant Propagation, Springer, The Netherlands.CrossRefGoogle Scholar
  26. Mikula A., Skierski J. & Rybczynski J.J. 2002. Somatic embryogenesis of Gentiana genus III. Characterization of three-yearold embryogenic suspensions of G. pannonica originated from various seedling explants. Acta Physiol. Plant. 24: 311–322.CrossRefGoogle Scholar
  27. Momcilovic I., Grubisic D., Kojic M. & Neskovic M. 1997. Agrobacterium rhizogenes-mediated transformation and plant regeneration of four Gentiana species. Plant Cell Tiss. Org. Cult. 50: 1–6.CrossRefGoogle Scholar
  28. Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 56: 473–497.CrossRefGoogle Scholar
  29. Murthy H.N., Dijkstra C., Anthony P., White D.A., Davey M.R., Power J.B., Hahn E.J. & Paek K.Y. 2008. Establishment of Withania somnifera hairy root cultures for the production of withanolide A. J. Integr. Plant Biol. 50: 975–981.PubMedCrossRefGoogle Scholar
  30. Nitsch J.P. & Nitsch C. 1969. Haploid plants from pollen grains. Sci. Wash. 163: 85–87.CrossRefGoogle Scholar
  31. Piatczak E., Krolicka A & Wysokinska H. 2006. Genetic transformation of Centaurium erythraea Rafn by Agrobacterium rhizogenes and the production of secoiridoids. Plant Cell Rep. 25: 1308–1315.PubMedCrossRefGoogle Scholar
  32. Riker A.J. 1930. Studies on infectious hairy root of nursery apple trees. J. Agric. Res. 41: 507–540.Google Scholar
  33. Sabovljevic A., Rosic N., Jankovic T. & Grubišic D. 2006. Secoiridoid content of Blackstonia Perfoliata in vivo and in vitro. In Vitro Cell. Dev. Biol. Plant. 42: 427–431.CrossRefGoogle Scholar
  34. Sarıkaya Topal A. 2004. Isolation and analysis of DNA, pp. 55–80. In: Temizkan N. & Arda N. (eds), Methods in Molecular Biology. IU Biyogem, Istanbul.Google Scholar
  35. Schenk B.U. & Hildebrandt A.C. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50: 194–204.CrossRefGoogle Scholar
  36. Shi, H.P. & Kintzios S. 2003. Genetic transformation of Pueraria phaseoloides with Agrobacterium rhizogenes and puerarin production in hairy roots. Plant Cell Rep. 21: 1103–1107.PubMedCrossRefGoogle Scholar
  37. Suresh B., Bais H.P., Raghavarao K.S.M.S., Ravishankar G.A. & Ghildyal N.P. 2005. Comparative evaluation of bioreactor design using Tagetes patula L. hairy roots as a model system. Process Biochem. 40: 1509–1515.CrossRefGoogle Scholar
  38. Suginuma C. & Akihama T. 1995. Transformation of gentian with Agrobacterium rhizogenes. Acta Hortic. 392: 153–160.Google Scholar
  39. Szücs Z., Danos B. & Nyiredy S. 2002. Comparative analysis of the underground parts of Gentiana species by HPLC with diode-array and mass spectrometric detection. Chromatographia 56: 19–22.CrossRefGoogle Scholar
  40. Tanyolac B. 2003. Inter-simple sequence repeat (ISSR) and RAPD variation among wild barley (H. vulgare subsp. spontaneum) populations from West Turkey. Genet. Resour. Crop Ev. 50: 611–614.CrossRefGoogle Scholar
  41. Tepfer D. 1984. Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37: 959–967.PubMedCrossRefGoogle Scholar
  42. Tepfer D. 1989. Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology, and evolution, pp. 294–342. In: Kosuge T. & Nester E.W. (eds), Plant-Microbe Interactions. Molecular and Genetic Perspectives, McGraw-Hill Publishing, New York.Google Scholar
  43. Tiwari R.K., Trivedi M., Guang Z.C., Guo G. & Zheng G. 2007. Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiaopicroside in transformed hairy root cultures. Plant Cell Rep. 26: 199–210.PubMedCrossRefGoogle Scholar
  44. Zhang H.L., Xue S.H., Pu F., Tiwari R.K. & Wang X.Y. 2010. Establishment of hairy root lines and analysis of gentiopictoside in the medicinal plant Gentiana macrophylla. Russ. J. Plant Physiol. 57: 110–117.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Sadiye Hayta
    • 1
    Email author
  • Aynur Gurel
    • 1
  • Ismail Hakkı Akgun
    • 1
  • Filiz Altan
    • 1
  • Markus Ganzera
    • 2
  • Bahattin Tanyolac
    • 1
  • Erdal Bedir
    • 1
  1. 1.Faculty of Engineering, Department of Bioengineering, BornovaEge UniversityIzmirTurkey
  2. 2.Institute of Pharmacy — PharmacognosyUniversity of InnsbruckInnsbruckAustria

Personalised recommendations