Skip to main content

Advertisement

Log in

Biochemical changes and adaptive strategies of plants under heavy metal stress

  • Section Botany
  • Review
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Heavy metal contamination of soil, aqueous waste stream and ground water causes major environmental and human health problems. Heavy metals are major environmental pollutants when they are present in high concentration in soil and show potential toxic effects on growth and development in plants. Due to unabated, indiscriminate and uncontrolled discharge of hazardous chemicals including heavy metals into the environment, plant continuously have to face various environmental constraints. In plants, seed germination is the first exchange interface with the surrounding medium and has been considered as highly sensitive to environmental changes. One of the crucial events during seed germination entails mobilization of seed reserves which is indispensable for the growth of embryonic axis. But, metabolic alterations by heavy metal exposure are known to depress the mobilization and utilization of reserve food by affecting the activity of hydrolytic enzymes. Some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals by which they manage to survive under metal stress. High tolerance to heavy metal toxicity could rely either on reduced uptake or increase planned internal sequestration which is manifested by an interaction between a genotype and its environment. Such mechanism involves the binding of heavy metals to cell wall, immobilization, exclusion of the plasma membrane, efflux of these toxic metal ions, reduction of heavy metal transport, compartmentalization and metal chelation by tonoplast located transporters and expression of more general stress response mechanisms such as stress proteins. It is important to understand the toxicity response of plant to heavy metals so that we can utilize appropriate plant species in the rehabilitation of contaminated areas. Therefore, in the present review attempts have been made to evaluate the effects of increasing level of heavy metal in soils on the key behavior of hydrolytic and nitrogen assimilation enzymes. Additionally, it also provides a broad overview of the strategies adopted by plants against heavy metal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad Z. & Trifu M. 1980. Studies Univ. Babes-Batyai (Series). Biol. 25: 35–37.

    Google Scholar 

  • Akiyama T. & Suzuki H. 1981. Pfanzenphysiol. 101: 131.

    CAS  Google Scholar 

  • Angosto T. & Matilla A. 1990. Physiol. Plant 80: 136–142.

    CAS  Google Scholar 

  • Baker A.J.M. 1987. Metal tolerance. New Phytol. 106: 93–111.

    CAS  Google Scholar 

  • Bansal P., Sharma P. & Goyal V. 2002. Biol. Plantarum 45: 125–127.

    CAS  Google Scholar 

  • Barret-Lennard E.G., Robson A.D. & Greenway H. 1982. J. Exp. Bot. 33: 682–693.

    Google Scholar 

  • Barthes L., Deléens E., Bpusser A., Hoarau J. & Prioul J.L. 1996. J. Exp. Bot. 47: 485–495.

    CAS  Google Scholar 

  • Beevers L. & Hageman R.H. 1969. Annu. Rev. Plant Physiol. 20: 495–522.

    CAS  Google Scholar 

  • Begum R., Kumar B.K. & Mohanty B.K. 2007. Plant Archieves 7(2): 575–578.

    Google Scholar 

  • Beknazarow B.O. & Valikhanov M.N. 2007. Appl. Biochem. Microbiol. 43: 153–158.

    Google Scholar 

  • Berjak P. & Villers T.A. 1972. New Phytol. 71: 135–144.

    Google Scholar 

  • Bewley J.D. & Black M. 1994. Seeds: Physiology of development and germination. 2 Ed., Plenum Press, New York, London.

    Google Scholar 

  • Bharti N. & Singh R.P. 1993. Phytochemistry. 33: 531–534.

    CAS  Google Scholar 

  • Bishnoi N.R., Sheoran I.S. & Singh R. 1993. Photosynthetica 28(1): 583–589.

    Google Scholar 

  • Bonnet M., Camares O. & Viesseire P.H. 2000. J. Exp. Bot. 51: 945–955.

    CAS  PubMed  Google Scholar 

  • Boussama N., Ouariti O., Suzuki A. & Ghorbal M.H. 1999. J. Plant Physiol. 155: 310–317.

    CAS  Google Scholar 

  • Bowler C., van Camp W., van Montagu M. & Inze D. 1994. CRC Crit. Rev. Plant Sci. 13: 199–218.

    CAS  Google Scholar 

  • Burke D.G., Watkins K. & Scott B.J. 1990. Crop Science. 30: 275–280.

    CAS  Google Scholar 

  • Campbell W.H. 1999. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 277–303.

    CAS  PubMed  Google Scholar 

  • Carpene E. & Wynne D. 1986. Comp. Biochem. Physiol. 83B: 163–167.

    CAS  Google Scholar 

  • Chen J., Huang J.W., Casper T. & Cunningham S.D. 1997. Arabldopsis as a model system for studying lead accumulation and tolerance in plants, pp. 264–273. In: Kruger E.L. (ed.), Phytoremediation of Soil and Water Contaminants. American Chemical Society, Washington.

    Google Scholar 

  • Chen J., Zaho J. & Goldsbrough P.B. 1997. Physiol. Plant. 101: 165–172.

    CAS  Google Scholar 

  • Chettri D.R., Surpratin M. & Ahmad S. 2004. Environ. Ecol. 22(1): 27–33.

    Google Scholar 

  • Chugh L.K., Gupta V.K. & Sawhney S.K. 1992. Phytochem. 31: 395–400.

    CAS  Google Scholar 

  • Chugh L.K. & Sawhney S.K. 1996. Environ. Pollut. 92:1–5.

    CAS  PubMed  Google Scholar 

  • Cobbet C. & Goldsbrough P. 2002. Annu. Rev. Plant Biol. 53: 159–182.

    Google Scholar 

  • Cooperman B.S. 1982. Methods Enzymol. 87: 526–548.

    CAS  PubMed  Google Scholar 

  • Crowe L.M., Mourdian R., Crowe J.H., Jackson S.A. & Womersly C. 1984. Biochem Biophys Acta. 769: 141–150.

    CAS  PubMed  Google Scholar 

  • Dasgupta B. & Mukherji S. 1977. Z. Pflanzenphysiol. 82: 95–106.

    CAS  Google Scholar 

  • Davies K.J.A. 1987. J. Biochem. Chem. 262: 9895–9901

    CAS  Google Scholar 

  • Davis F.I., Puryear J.D., Newton R.J., Egilla J.N. & Grossi J.A.S. 2001. J. Plant Physiol. 158: 777–786.

    Google Scholar 

  • De Knecht J.A., van Baren N., Ten Bookum W.M., Wong F., Sang H.W., Koevoet P.L.M., Schat H. & Verkleji J.A.C. 1995. Plant Sci. 106: 9–18.

    Google Scholar 

  • Devi S.R. & Prasad M.N.V. 1999. Membrane lipid alterations in heavy metal exposed plants, pp. 99–116. In: Prasad M.N.V. & Hagemmeyer J. (eds), Heavy metal stress in plants: from molecules to ecosystem. Springer-Verlag, Berlin.

    Google Scholar 

  • De Vos R.C.H., Schat H., De Waal M.A.M., Vooijis R. & Ernest W.H.O. 1991. Physiol. Plant. 82: 523–528.

    Google Scholar 

  • Deef H.E.S. 2007. World J. Agricultur. Sci. 3(3): 322–328.

    Google Scholar 

  • Devi P.U., Murugan S., Akilapriyadarshini S., Suja S. & Chinnaswamy P. 2007. Effect of mercury and effluent on seed germination, root-shoot length, amylase activity and phenolic compounds in Vigna unguiculata. 6(3): 457–462.

    CAS  Google Scholar 

  • Didierjean L., Frendo P., Nasser W., Genot G., Marivet J. & Burkad G. 1996. Planta. 199: 1–8.

    CAS  PubMed  Google Scholar 

  • Dietz K.J., Baier M. & Kramer U. 1999. Free radicals and reactive oxygen species are mediators of heavy metal toxicity in plants, pp. 79–97. In: Prasad M.N.V. & Hagemmeyer J. (eds), Heavy metal stress in plants: from molecules to ecosystem. Springer-Verlag, Berlin.

    Google Scholar 

  • Dovgulyuk A.I., Kalynyuk T.B. & Blyum Y.B. 2001. Tsitologiyai — Genetica. 35(1): 3–4.

    Google Scholar 

  • Draobzkiewicz M., Skórzyńska-Polit E. & Krupa Z. 2004. Biometals 17: 379–387.

    Google Scholar 

  • Dua A. & Sawhney S.K. 1991. Environ. Exp. Bot. 31: 133–139.

    Google Scholar 

  • Duff S.M.G., Sarath G. & Plaxton W.C. 1994. Physiol Plant. 90: 791–800.

    CAS  Google Scholar 

  • Ehsanpour A.A. & Amini F. 2003. Afr. J. Biotechnol. 2: 133–135.

    CAS  Google Scholar 

  • Entry J.A., Watrud L.S. & Reeves M. 1999. Environ. Metal Poll. 104: 449–457.

    CAS  Google Scholar 

  • Ferreira R.B., Malo T.S. & Teixeira A.N. 1995. Aust. J. Plant Physiol. 22: 373–381.

    CAS  Google Scholar 

  • Ferretti M., Ghisi R., Merlo L., Dalla Vecchia F. & Passera C. 1993. Photosynthetica 29: 49–54.

    CAS  Google Scholar 

  • Fincher G. 1989. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 305–346.

    CAS  Google Scholar 

  • Gahan P.B. & Mc Lean J. 1969. Planta 89: 126–136.

    CAS  Google Scholar 

  • Galli U., Schuepp H. & Brunold C. 1996. Planta 198: 139–143.

    CAS  Google Scholar 

  • Gautam M., Sengar S.S., Garg S.K., Senger K. & Chaudhary R. 2008. Research J. Phytochem. 2(2): 61–68.

    CAS  Google Scholar 

  • Giritch A., Ganal M., Stephan U.W. & Baumlein H. 1998. Plant Mol. Biol. 37: 701–714.

    CAS  PubMed  Google Scholar 

  • Gopal R., Giri V. & Nautiyal N. 2008. Indian J. Plant Physiol. 13(1): 44–49.

    CAS  Google Scholar 

  • Gouia H., Ghorbal M.H. & Meyer C. 2000. Plant Physiol Biochem. 38: 629–638.

    CAS  Google Scholar 

  • Grill E., Loffer S., Winnacker E.L. & Zenk M.H. 1989. P. Natl. Acad. Sci. USA 86: 6838–6842.

    CAS  Google Scholar 

  • Grill E., Winnacker E.L. & Zenk M.H. 1986a. FEBS Lett. 205: 47–50.

    CAS  Google Scholar 

  • Grill E., Winnacker E.L. & Zenk M.H. 1987. Proc. Natl. Acad. Sci. USA 8: 439–443.

    Google Scholar 

  • Guo J. & Pesacreta J.C. 1997. J. Plant Physiol. 151: 520–527.

    CAS  Google Scholar 

  • Hall J.L. 2002. J. Exp. Bot. 53: 1–11.

    CAS  PubMed  Google Scholar 

  • Hernández L.E. & Cooke D.T. 1997. J. Exp. Bot. 48: 1375–1381.

    Google Scholar 

  • Hernández L.E., Garate A. & Carpena-Ruiz R. 1997. Plant Soil 189: 97–106.

    Google Scholar 

  • Hoehamer C.F., Mazur C.S. & Wolfe N.L. 2005. J. Agric. Food Chem. 53: 90–97.

    CAS  PubMed  Google Scholar 

  • Hopkin W. 1999. Plant and inorganic nutrients, pp. 51–76. In: Hopkin W. (ed.), Introduction to Plant Physiology 2nd ed., Part 2. John Wiley & Sons Inc., New York, Chichester, Weinheim, Brisbane, Singapore, Toronato.

    Google Scholar 

  • Jouili H. & Ezzedine E.F. 2003. C. R. Biol. 326: 639–644.

    CAS  PubMed  Google Scholar 

  • Kaiser W.M., Weiner H. & Huber S.C. 1999. Physiol Plant. 105: 385–390.

    CAS  Google Scholar 

  • Karunagaran D. & Ramakrishna Rao P. 1990. Indian J. Plant Physiol. 33: 232–238.

    CAS  Google Scholar 

  • Kerkeb L., Donaire J.P., Venema K., Rodriguez-Rosales M.P. 2001. Physiol. Plant. 113: 217–224.

    CAS  PubMed  Google Scholar 

  • Khudsar T., Mahmooduzzafar, Iqbal M. & Sairam R.K. 2004. Biol. Plantarum 48(2): 255–260.

    CAS  Google Scholar 

  • Klapheck S., Fleigner W. & Zimmer K. 1994. Plant Physiol. 104: 1325–1332.

    CAS  PubMed  Google Scholar 

  • Klapheck S., Schlunz S. & Bergmann L. 1995. Plant Physiol. 107: 515–521.

    CAS  PubMed  Google Scholar 

  • Krämer U., Cotter-Howells J.D., Charnock J.M., Baker A.J.M. & Smith J.A.C. 1996. Nature 379: 635–638.

    Google Scholar 

  • Kudesia V.P. 1980. Toxicity of metals. pp. 203–217. In: Kudesia V.P. (ed.), Water Pollution. Pragati Prakashan, Meerut, India.

    Google Scholar 

  • Kumar G. & Kesarwani S. 2004. Int. J. Mendel. 2(1–2): 41–42.

    Google Scholar 

  • Kuriakose S.V. & Prasad M.N.V. 2008. Plant Growth Regul. 54: 143–156.

    CAS  Google Scholar 

  • Leyval C., Turnau K. & Aaselwandter K. 1997. Mycorrhiza 7: 139–153.

    CAS  Google Scholar 

  • Liu C.P., Shen Z.G. & Li X.D. 2007. Biol. Plantarum 51(1): 116–120.

    CAS  Google Scholar 

  • Liu J., Xiang Z.T., Li T.Y. & Huang H. 2004. Environ. Exp. Bot. 52: 43–51.

    CAS  Google Scholar 

  • Lou L.Q., Shen Z.G. & Li X.D. 2004. Environ. Exp. Bot. 51: 111–120.

    CAS  Google Scholar 

  • Luna C.M., Casano L.M. & Trippi V.S. 1997. Physiol. Plant. 101: 103–108.

    CAS  Google Scholar 

  • Luna C.M., Casano L.M. & Trippi V.S. 2000. Biol. Plantarum 43(2): 257–262.

    CAS  Google Scholar 

  • Maheshwari R. & Dubey R.S. 2007. Plant Growth Regul. 51: 231–243.

    CAS  Google Scholar 

  • Maitani T., Kubota H., Sato K. & Yamada T. 1996. Plant Physiol. 110: 1145–1150.

    CAS  PubMed  Google Scholar 

  • Mathys W. 1975. Physiol. Plant. 33: 161–165.

    CAS  Google Scholar 

  • Mayer A.M. & Polijakoff-Mayber A. 1982. The germination of seeds. 3rd Ed. Pergamon Press, Oxford.

    Google Scholar 

  • Mayer A.M. & Poljakoff-Mayber A. 1975. The germination of seeds. 2nd edn. Pergamon Press, New York.

    Google Scholar 

  • McNair M.R. 1993. New Phytol. 124: 541–559.

    Google Scholar 

  • McNair M.R., Tilstone G.H. & Smith S.S. 2000. The genetics of metal tolerance and accumulation in higher plants, pp. 235–250. In: Terry N. & Baňuelos G. (eds), Phytoremediation of Contaminated Soils and Water. Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  • Meharg A.A. 1994. Plant Cell Environ. 17: 989–993.

    CAS  Google Scholar 

  • Mehra R.K. & Tripathi R.D. 1999. Phytochelatins and metal tolerance, pp. 367–382. In: Agrawal S.B. & Agrawal M. (eds), Environmental Pollution and Plant responses. CRC Press, Lewis Publisher, Boca Ration, FL.

    Google Scholar 

  • Mehra R.K. & Winge D.R. 1988. Arch. Biochem. Biophys. 265: 381–389.

    CAS  PubMed  Google Scholar 

  • Mejre M.A. & Bulow J.K. 2001. Chemosphere 41: 197–207.

    Google Scholar 

  • Meuwly P., Thibault P., Schwan A.L. & Rauser W.E. 1995. Plant J. 7: 391–400.

    CAS  PubMed  Google Scholar 

  • Mihoub A., Chaoui A. & El Ferjani E. 2005. C. R. Biol. 328: 33–41.

    CAS  PubMed  Google Scholar 

  • Mishra S. & Dubey R.S. 2006. J. Plant Physiol. 163(9): 927–936.

    CAS  PubMed  Google Scholar 

  • Mishra S. & Dubey R.S. 2008. Braz. J Plant Physiol. 20(1): 19–28.

    CAS  Google Scholar 

  • Mittal S. & Sawhney S.K. 1990. Plant Physiol. Biochem. 17(2): 75–81.

    Google Scholar 

  • Muntz K., Belozersky M.A., Dunaevsky Y.E., Schlereth A. & Tiedemann J. 2001. J Exp Bot. 52: 1741–1752.

    CAS  PubMed  Google Scholar 

  • Murphy A. & Taiz L. 1995. Plant Physiol. 109: 945–954.

    CAS  PubMed  Google Scholar 

  • Murphy A. & Taiz L. 1997. New Phytol. 136: 211–222.

    CAS  Google Scholar 

  • Murphy A., Zhou J., Goldsbrough P.B. & Taiz L. 1997. Plant Physiol. 113: 1293–1302.

    CAS  PubMed  Google Scholar 

  • Neumann D., Zur Neiden U., Schwieger W., Leopold I. & Lichtenberger O. 1997. J. Plant Physiol. 151: 101–108.

    CAS  Google Scholar 

  • Nieboer E. & Richardson D.H.S. 1980. Environ. Pollut. B1: 3–26.

    Google Scholar 

  • Nies D.H. 1999. Appl. Microb. Biotech. 51: 730.

    CAS  Google Scholar 

  • Nishizono H., Watanabe T., Orii T. & Suzuki S. 1989. Plant Cell Physiol. 30: 565–569.

    CAS  Google Scholar 

  • Noctor G. & Foyer C.H. 1998. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49: 249–279.

    CAS  Google Scholar 

  • Nussbaum S., Schmutz D. & Brunold C. 1988. Plant Physiol. 88: 1407–1410.

    CAS  PubMed  Google Scholar 

  • Okamato T. & Minamikawa T. 1998. J. Plant Physiol. 152: 675–682.

    Google Scholar 

  • Orhanovic S. & Pavela-Vrancic M. 2000. Croat. Chim. Acta 73: 819–830.

    CAS  Google Scholar 

  • Osborne D.J. 1980. Senescence in seeds, pp. 13–33. In: Thimann K.V. (ed.), Senescence in plants, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Panara F., Pasqualini S. & Antonielli M. 1990. Biochim. Biophys. Acta 1037: 73–80.

    CAS  PubMed  Google Scholar 

  • Patra M. & Sharma A. 2002. Biologia 57(3): 409–414.

    CAS  Google Scholar 

  • Pavadi P., Dhanavel D., Vijayarengan P., Seetharaman N. & Selvaraju M. 2004. Plant Archives 4(2): 475–478.

    Google Scholar 

  • Pena L.B., Zawoznik M.S., Tomaro M.L. & Gallego S.M. 2008. Chemosphere. 72(5): 741–746.

    CAS  PubMed  Google Scholar 

  • Petruzelli L. & Taranto G. 1989. Physiol Plant. 76: 289–294.

    Google Scholar 

  • Pinto E., Sigaud-Kutner T.C.S., Leitao M.A.S., Okamoto O.K., Morse D. & Colepicolo P. 2003. J. Phycol. 39: 1008–1018.

    CAS  Google Scholar 

  • Pintro J., Barloy J. & Fallavier P. 1997. J. Plant Nutr. 20: 601–611.

    CAS  Google Scholar 

  • Ponquett R.T., Smith M.T. & Ross G. 1992. Seed Sci. Res. 2: 51–54.

    CAS  Google Scholar 

  • Powell W.W. & Raymond B.T. 1981. Physiol. Plant. 53: 263–268.

    Google Scholar 

  • Prasad D.D.K. & Prasad A.R.K. 1987. Phytochemistry 26: 881–883.

    CAS  Google Scholar 

  • Price N.M. & Morel F.M.M. 1990. Nature. 344: 658–660.

    CAS  Google Scholar 

  • Quariti O., Gouia H. & Ghorbal M.H. 1997. Plant Physiol. Biochem. 35: 347–354.

    Google Scholar 

  • Quartacci M.F., Cosi E. & Navari-Izzo F. 2001. J. Exp. Bot. 52: 77–84.

    CAS  PubMed  Google Scholar 

  • Rai V., Vajpayee P., Singh S.N. & Mehrotra S. 2004. Plant Sci. 167: 1159–1169.

    CAS  Google Scholar 

  • Rajeshwari J. & Ramakrishanan Rao P. 2002. Indian J. Plant Physiol. 7: 314–320.

    Google Scholar 

  • Ramos I., Esteban E., Lucena J.J. & Gárate A. 2002. Plant Sci. 162: 761–767.

    CAS  Google Scholar 

  • Rao K.V.M. & Sresty T.V.S. 2000. Plant Sci. 157: 113–128.

    Google Scholar 

  • Rauser W.E. 1984. J. Plant Physiol. 115: 143–152.

    CAS  Google Scholar 

  • Rauser W.E. 1995. Plant Physiol. 109: 1141–1149.

    CAS  PubMed  Google Scholar 

  • Rauser W.E. 1999. Cell Biol. Biophysics 31: 19–48.

    CAS  Google Scholar 

  • Rebechini H.M. & Hanzely L. 1974. Z Pflanzenphysiol. 73: 377–386.

    CAS  Google Scholar 

  • Reichman S.M. 2002. The responses of plants to metal toxicity: A review focusing on Copper, Manganese and Zinc. Australian Minerals & Energy Environment Foundation, Melbourne, Australia.

    Google Scholar 

  • Reinheckel T., Noack H., Lorenz S., Wiswedel I. & Augustin W. 1998. Free Radical Research 29: 297–305.

    CAS  PubMed  Google Scholar 

  • Robert E.H. & Ellis R. 1982. Physiological, ultrastructural and metabolic aspects of seed viability, pp. 465–483. In: Khan A.A. (ed.), The physiology and biochemistry of seed development, dormancy and germination, Elsevier, New York.

    Google Scholar 

  • Robinson N.J. & Jackson P.J. 1986. Physiol. Plant. 67: 499–506.

    CAS  Google Scholar 

  • Saleh A.H. & Abdel-Kader D.Z. 2000. J. Union Arab. Biol. Cairo 8: 45–58.

    Google Scholar 

  • Salin M.L. 1988. Physiol. Plant. 72: 681–689.

    CAS  Google Scholar 

  • Salt D.E., Kato N., Krämer U., Smith R.D. & Raskin I. 2000. The role of root excudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of ThlaspiI, pp. 189–200. In: Terry N. & Banuelos G. (eds), Phytoremediation of contaminated soil and water, CRC Press, LLC.

    Google Scholar 

  • Salt D.E. & Rauser W.E. 1995. Plant Physiol. 107: 1239–1301.

    Google Scholar 

  • Sanit`a di Toppi L. & Gabbrielli R. 1999 Environ. Exp. Bot. 41: 105–130.

    Google Scholar 

  • Sativir K.A., Gupta K. & Kaur N. 2000. Plant Growth Regul. 30:61–70.

    Google Scholar 

  • Schat H., Llugany M. & Bernhard R. 2000. Metal-specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes, pp. 171–188. In: Terry N. & Banuelos G. (eds), Phytoremediation of contaminated soil and water, CRC Press, LLC.

    Google Scholar 

  • Schat H., Llugamy M., Voojis R., Harley-Whitaker J. & Bleeker P.M. 2002. J. Exp. Bot. 53: 2381–2392.

    CAS  PubMed  Google Scholar 

  • Schlereth A., Standhardt D., Mock H.P. & Muntz K. 2001. Planta 212: 718–727.

    CAS  PubMed  Google Scholar 

  • Schultz P. & Jansen W.A. 1981. Protoplasma 107: 27–45.

    Google Scholar 

  • Schützendübel A., Schwanz P., Teichmann T., Gross K., Langenfeld-Heyser R., Godbold D.L. & Polle A. 2001. Plant Physiol. 127: 887–892.

    PubMed  Google Scholar 

  • Schützendübel A., Schwanz P., Teichmann T., Gross K., Langenfeld-Heyser R., Godbold D. L. & Polle A. 2002. J. Exp. Bot. 53: 1354–1365.

    Google Scholar 

  • Shah K. & Dubey R.S. 1998. J. Agron. Crop. Sci. 180: 223–231.

    CAS  Google Scholar 

  • Shah K., Kumar R.G., Verma S. & Dubey R.S. 2001. Plant Sci. 161: 1135–1144.

    CAS  Google Scholar 

  • Shah K. & Nongkynrih J.M. 2007. Biol. Plantarum 51(4): 618–634.

    CAS  Google Scholar 

  • Sharma P. & Dubey R.S. 2005. Braz. J. Plant Physiol. 17: 35–52.

    CAS  Google Scholar 

  • Sharma S., Virdi P., Gambhir S. & Munshi S.K. 2005. Ind. J. Agric. Biochem. 18: 9–12.

    CAS  Google Scholar 

  • Shintinawy Al F. & Ansary Al A. 2000. Biol. Plantarum 43(1): 79–84.

    Google Scholar 

  • Simola L.K. 1976. Z. Pfanzenphysiol. 78: 245–252.

    Google Scholar 

  • Sinha S.K., Srivastava H.S. & Mishra S.K. 1988. Acta Soc. Bot. Pol. 57: 457–463.

    CAS  Google Scholar 

  • Sinhal V.K. 2007. Poll. Res. 26(3): 417–420.

    CAS  Google Scholar 

  • Široká B., Huttová J., Tamás L., Šimonovičová & Mistrík I. 2004. Biologia 59: 513–517.

    Google Scholar 

  • Smarelli J., Wilbour & Campbell. 1983. Biochem. Biophys. Acta 742: 435–445.

    Google Scholar 

  • Smith S.E. & Mc Nair M.R. 1998. Heridity 80: 760–768.

    CAS  Google Scholar 

  • Steffens J.C. 1990. Annu. Rev. Physiol. Plant Mol. Biol. 41: 553–575.

    CAS  Google Scholar 

  • Stolt J.P., Sneller F.E.C., Bryngelsson T., Lundborg T. & Schat H. 2003. Environ. Exp. Bot. 49: 21–28.

    CAS  Google Scholar 

  • Strange J. & Macnair M.R. 1991. New Phytol. 119: 383–388.

    CAS  Google Scholar 

  • Szabo-Nagy A., Galiba G. & Erdei L. 1992. J. Plant Physiol. 140: 629–633.

    CAS  Google Scholar 

  • Tabaldi L.A., Ruppenthal R., Cargnelutti D., Morsch V.M., Pereira L.B. & Schetinger M.R.C. 2007. Environ. Exp. Bot. 59(1): 43–48.

    CAS  Google Scholar 

  • Taneyama M., Okamoto T., Yamauchi D. & Minamikawa T. 1996. Plant Cell Physiol. 37: 19–26.

    CAS  Google Scholar 

  • Taylor G.J. 1991. Current Topics Plant Biochem. Physiol. 10: 57–93.

    CAS  Google Scholar 

  • Tomsett A.B. & Thurman D.A. 1988. Plant Cell Environ. 11: 383–394.

    CAS  Google Scholar 

  • Tripathi A.K., Tripathi S. & Tripathi S. 1999. J. Environ. Biol. 20: 93–98.

    CAS  Google Scholar 

  • Vajpayee P., Sharma S.C., Tripathi R.D., Rai U.N. & Yunus M. 1999. Chemosphere 39: 2159–2169.

    CAS  Google Scholar 

  • Vajpayee P., Tripathi R.D., Rai U.N., Ali M.B & Singh S.N. 2000. Chemosphere 41: 1075–1082.

    CAS  PubMed  Google Scholar 

  • Vallee B.L. & Ulmer D.D. 1972. Annu. Rev. Biochem. 41: 91–128.

    CAS  PubMed  Google Scholar 

  • Van Assche F. & Cljsters H. 1986. J. Plant Physiol. 125: 355–360.

    Google Scholar 

  • Van Assche F. & Cljsters H. 1990. Plant Cell Environ. 13:195–206.

    Google Scholar 

  • Villiers T.A. 1973. Ageing and the longevity of seeds, pp. 265–268. In: Heydecker W. (ed.), Seed Ecology, Pennsylvania State University Press, Pennsylvania.

    Google Scholar 

  • Vincent J.B., Crowder M.W. & Averill B.A. 1992. Trends Biochem. Sci. 17: 105–110.

    CAS  PubMed  Google Scholar 

  • Vogeli-Lange R. & Wagner G.J. 1990. Plant Physiol. 92: 1086–1093.

    CAS  PubMed  Google Scholar 

  • Wildner G.F. & Henkel J. 1979. Planta. 146: 223–228.

    CAS  Google Scholar 

  • Wilson D.O. & Mc Donald. 1986. Seed Sci. Technol. 14: 269–300.

    CAS  Google Scholar 

  • Wilson K.A. 1986. Role of proteolytic enzymes in the mobilization of protein reserves in the germinating dicot seeds, pp. 19–48. In: Dalling M.J. (ed.) Plant Proteolytic Enzymes, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Wojcik M. & Tukiendorf A. 2005. Biol. Plantarum 49: 237–245.

    CAS  Google Scholar 

  • Wójcik M., Vangronsveld J., D’Haen J. & Tukiendorf A. 2005. Environ. Exp. Bot. 53: 163–171.

    Google Scholar 

  • Xiang C. & Oliver D.J. 1998. Plant Cell. 10: 1539–1550.

    CAS  PubMed  Google Scholar 

  • Yupsanis T., Eleftheriou P., Pantazaki A. & Georgatsos J.G. 1993. J. Plant Physiol. 141: 257–262.

    CAS  Google Scholar 

  • Zayed A.G. & Amin S.H. 2002. J. Plant Nutri. 200: 11–12.

    Google Scholar 

  • Zeid I.M. 2001. Biol. Plant. 44(1):111–115.

    CAS  Google Scholar 

  • Zeid I.M. & Abou El Ghate H.M. 2007. Pakist. J. Biol. Sci. 10(6): 874–879.

    CAS  Google Scholar 

  • Zenk M.H. 1996. Gene 179: 21–30.

    CAS  PubMed  Google Scholar 

  • Zhou J. & Goldsbrough P.B. 1994. Plant Cell. 6: 875–884.

    CAS  PubMed  Google Scholar 

  • Zornoza P., Vázquez S., Esteban E., Fernández-Pascual M. & Carpena R. 2002. Plant Physiol. Biochem. 40: 1003–1009.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Dhankhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solanki, R., Dhankhar, R. Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66, 195–204 (2011). https://doi.org/10.2478/s11756-011-0005-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-011-0005-6

Key words

Navigation