Skip to main content
Log in

Tubulin polymerization promoting protein (TPPP) ortholog from Suberites domuncula and comparative analysis of TPPP/p25 gene family

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Sponges are one of the oldest metazoan phyla that are, due to their highly conservative nature, often referred to as the living fossils of multicellular animals. As such, they are a very important model for evolutionary, developmental and functional studies of Metazoa. Tubulin polymerization promoting proteins (TPPPs) are defined by the presence of p25-alpha domain (Pfam05517). Their functional characteristics resemble those of microtubule-associated proteins. Presence of TPPP homologous genes has been postulated in all eukaryotes with ciliated cells and their primary function has been proposed as some basic cilia-connected function. We present here the genomic structure and the corresponding cDNA sequence of one poriferan TPPP homolog (SdTPPP) isolated from the marine sponge Suberites domuncula; and a comparative analysis of TPPP homolog sequences and genomic structures from other Eukaryotes. Our results confirm the radiation of one TPPP homolog into three distinct genes in the Vertebrate lineage, but the origin of different sequences and their phylogenetic relationships show to be influenced by alternative protein isoforms, independent gene duplications, modularity of the p25-alpha domain and possible adaptational requirements to environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EST:

expressed sequence tag

MAP:

microtubule associated protein

Myr:

million years

NCBI:

National Center for Biotechnology Information

TPPP:

tubulin polymerization promoting protein

Plavi:

Plasmodium vivax

Plafa:

Plasmodium falciparum

Toxgo:

Toxoplasma gondii

Tetth:

Tetrahymena thermophyla

Parte:

Paramecium tetraurelia

Leiin:

Leishmania infantum

Trycr:

Trypanosoma cruzi

Chlre:

Chlamydomonas reinhardtii

Monbr:

Monosiga brevicollis

Batde:

Batrachochytrium dendrobatidis

Subdo:

Suberites domuncula

Nemve:

Nematostella vectensis

Strpu:

Strongylocentrotus purpuratus

Ampqu:

Amphimedon queenslandica

Hydma:

Hydra magnapapillata

Cioin:

Ciona intestinalis

Trica:

Tribolium castaneum

Dromo:

Drosophila mojavensis

Drowi:

Drosophila willistoni

Drops:

Drosophila pseudoobscura

Droya:

Drosophila yakuba

Drome:

Drosophila melanogaster

Nasvi:

Nasonia vitripennis

Apime:

Apis mellifera

Anoga:

Anopheles gambiae

Aedae:

Aedes aegypti

Culqu:

Culex quinquefasciatus

Caeel:

Caenorhabditis elegans

Bruma:

Brugia malayi

Brafl:

Branchiostoma floridae

Musmu:

Mus musculus

Homsa:

Homo sapiens

Tetni:

Tetraodon nigroviridis

Osmmo:

Osmerus mordax

Xenla:

Xenopus laevis

Xentr:

Xenopus tropicalis

References

  • Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W. & Lipman D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    Article  CAS  PubMed  Google Scholar 

  • Aramini J.M., Rossi P., Shastry R., Nwosu C., Cunningham K., Xiao R., Liu J., Baran M.C., Rajan P.K., Acton T.B., Rost B. & Montelione G.T. 2007. Solution NMR structure of tubulin polymerization-promoting protein family member 3 from Homo sapiens. DOI:10.2210/pdb2jrf/pdb.

  • Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., Struhl K. 2002. Current Protocols in Molecular Biology. John Wiley & Sons, New York.

    Google Scholar 

  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2009. GenBank. Nucleic Acids Res. 37: D26–D31.

    Article  CAS  PubMed  Google Scholar 

  • Bergquist P.R. 1978. Sponges. Hutchinson, London.

    Google Scholar 

  • Boguski M.S., Lowe T.M. & Tolstoshev C.M. 1993. dbEST — database for “expressed sequence tags”. Nat. Genet. 4: 332–333.

    Article  CAS  PubMed  Google Scholar 

  • Chalker D.L. & Stover N.A. 2007. Genome evolution: a double take for Paramecium. Curr. Biol. 17: R97–R99.

    Article  CAS  PubMed  Google Scholar 

  • Chapman B.A., Bowers J.E., Feltus F.A. & Paterson A.H. 2006. Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. Proc. Natl. Acad. Sci. USA 103: 2730–2735.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W., de Souza S.J. & Long M., 1997. Origin of genes. Proc. Natl. Acad. Sci. USA 94: 7698–7703.

    Article  CAS  PubMed  Google Scholar 

  • Hlavanda E., Klement E., Kókai E., Kovács J., Vincze O., Tőkési N., Orosz F., Medzihradszky K.F., Dombrádi V. & Ovádi J. 2007. Phosphorylation blocks the activity of tubulin polymerization promoting protein (TPPP): identification of sites targeted by different kinases. J. Biol. Chem. 282: 29531–29539.

    Article  CAS  PubMed  Google Scholar 

  • Keeling P., Leander B.S. & Simpson A. 2009. Eukaryotes. Eukaryota, organisms with nucleated cells. Version 28 October 2009. http://tolweb.org/Eukaryotes/3/2009.10.28 in The Tree of Life Web Project.

  • Kleiger G. & Eisenberg D. 2002. GXXXG and GXXXA motifs stabilize FAD and NAD(P)-binding Rossmann folds through Cα-H…O hydrogen bonds and van der Waals interactions. J. Mol. Biol. 323: 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Kleinnijenhuis A.J., Hedegaard C., Lundvig D., Sundbye S., Issinger O.G., Jensen O.N. & Jensen P.H. 2008. Identification of multiple post-translational modifications in the porcine brain specific p25alpha. J. Neurochem. 106: 925–933.

    Article  CAS  PubMed  Google Scholar 

  • Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. & Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Lehotzky A., Lau P., Tokési N., Muja N., Hudson L.D. & Ovádi J. 2010. Tubulin polymerization-promoting protein (TPPP/p25) is critical for oligodendrocyte differentiation. Glia 58: 157–168.

    Article  PubMed  Google Scholar 

  • Li C.W., Chen J.Y. & Hua T.E. 1998. Precambrian sponges with cellular structures. Science 279: 879–882.

    Article  CAS  PubMed  Google Scholar 

  • Marti M.J., Tolosa E. & Campdelacreu J. 2003. Clinical overview of the synucleinopathies. Mov. Disord. 18(Suppl 6): S21–S27.

    Article  PubMed  Google Scholar 

  • Müller W.E.G. 1998. Origin of Metazoa: sponges as living fossils. Naturwissenschaften 85: 11–25.

    Article  PubMed  Google Scholar 

  • Müller W.E.G. 2001. How was metazoan threshold crossed: the hypothetical Urmetazoa. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129: 433–460.

    Article  PubMed  Google Scholar 

  • Nicholas K.B., Nicholas Jr. H.B. & Deerfield II D.W. 1997. Nicholas K.B., Nicholas Jr. H.B. & Deerfield II D.W. 1997. Gene-Doc: Analysis and Visualization of Genetic Variation. EMBNET News 4: 1–4.

    Google Scholar 

  • Orosz F. 2009. Apicortin, a unique protein, with a putative cytoskeletal role, shared only by apicomplexan parasites and the placozoan Trichoplax adhaerens. Infect. Genet. Evol. 9: 1275–1286.

    Article  CAS  PubMed  Google Scholar 

  • Orosz F., Kovács G.G., Lehotzky A., Oláh J., Vincze O. & Ovádi J. 2004. TPPP/p25: from unfolded protein to misfolding disease: prediction and experiments. Biol. Cell 96: 701–711.

    Article  CAS  PubMed  Google Scholar 

  • Orosz F., Lehotzky A., Oláh J. & Ovádi J. 2009. TPPP/p25: A new unstructured protein hallmarking synucleinopathies, pp. 225–250. In: Ovádi J. & Orosz F. (eds) Protein Folding and Misfolding: Neurodegenerative Diseases (Focus on Structural Biology, Vol. 7), Springer, London, New York.

    Chapter  Google Scholar 

  • Orosz F. & Ovádi J. 2008. TPPP orthologs are ciliary proteins. FEBS Lett. 582: 3757–3764.

    Article  CAS  PubMed  Google Scholar 

  • Otzen D.E., Lundvig D.M.S., Wimmer R., Nielsen L.H., Pedersen J.R. & Jensen P.H. 2005. p25 alpha is flexible but natively folded and binds tubulin with oligomeric stoichiometry. Protein Sci. 14: 1396–1409.

    Article  CAS  PubMed  Google Scholar 

  • Ovádi J. & Orosz F. 2009. An unstructured protein with destructive potential: TPPP/p25 in neurodegeneration. BioEssays 31: 676–686.

    Article  PubMed  Google Scholar 

  • Page R.D.M. 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comp. Applic. Biosci. 12: 357–358.

    CAS  Google Scholar 

  • Plese B., Grebenjuk V.A., Schröder H.C., Breter H.J., Müller I.M. & Müller W.E.G. 2008. Cloning and expression of a tauropine dehydrogenase from the marine sponge Suberites domuncula. Mar. Biol. 153: 1219–1232.

    Article  CAS  Google Scholar 

  • Rigby J.K., Budd G.E., Wood R.A. & Debrenne F. 1993. Porifera, pp. 71–99. In: Benton M.J. (ed.) The Fossil Record 2. Chapman & Hall, London.

    Google Scholar 

  • Rogozin I.B., Sverdlov A.V., Babenko V.N. & Koonin E.V. 2005. Analysis of evolution of exon-intron structure of eukaryotic genes. Brief. Bioinform. 6: 118–34.

    Article  CAS  PubMed  Google Scholar 

  • Rossmann M.G., Moras D. & Olsen K.W. 1974. Chemical and biological evolution of nucleotide-binding proteins. Nature 250: 194–195.

    Article  CAS  PubMed  Google Scholar 

  • Rowland S.M. & Gangloff R.A. 1988. Structure and paleoecology of Lower Cambrian reefs. Palaios 3: 111–135.

    Article  Google Scholar 

  • Sayers E.W., Barrett T., Benson D.A., Bryant S.H., Canese K., Chetvernin V., Church D.M., DiCuccio M., Edgar R., Federhen S., Feolo M., Geer L.Y., Helmberg W., Kapustin Y., Landsman D., Lipman D.J., Madden T.L., Maglott D.R., Miller V., Mizrachi I., Ostell J., Pruitt K.D., Schuler G.D., Sequeira E., Sherry S.T., Shumway M., Sirotkin K., Souvorov A., Starchenko G., Tatusova T.A., Wagner L., Yaschenko E. & Ye J. 2009. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 37: D5–D15.

    Article  CAS  PubMed  Google Scholar 

  • Sbicego S., Nabholz C.E., Hauser R., Blum B. & Schneider A. 1998. In vivo import of unspliced tRNATyr containing synthetic introns of variable length into mitochondria of Leishmania tarentolae. Nucleic Acids Res. 26: 5251–5255.

    Article  CAS  PubMed  Google Scholar 

  • Seack J., Perovic S., Gamulin V., Schröder H.C., Beutelmann P., Müller I.M. & Müller W.E.G. 2001. Identification of highly conserved genes: SNZ and SNO in the marine sponge Suberites domuncula: their gene structure and promoter activity in mammalian cells. Biochim. Biophys. Acta 1520: 21–34.

    CAS  PubMed  Google Scholar 

  • Song Y.J.C., Lundvig D.M.S., Huang Y., Gai W.P., Blumbergs P.C., Højrup P., Otzen D., Halliday G.M. & Jensen P.H. 2007. P25 alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. Am. J. Pathol. 171: 1291–1303.

    Article  CAS  PubMed  Google Scholar 

  • Štifanić M. & Batel R. 2007. Analysis of sponge genes indicates the short intron size. Periodicum Biologorum 109: 195–200.

    Google Scholar 

  • Štifanić M., Mičić M., Ramšak A., Blašković S., Ruso A., Zahn R.K. & Batel R. 2009. p63 in Mytilus galloprovincialis and p53 family members in the phylum Mollusca. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 154: 264–273.

    Article  PubMed  Google Scholar 

  • Takahashi M., Tomizawa K., Ishiguro K., Sato K., Omori A., Sato S., Shiratsuchi A., Uchida T. & Imahori K. 1991. A novel brain-specific 25 kDa protein (p25) is phosphorylated by a Ser/Thr-Pro kinase (TPK II) from tau protein kinase fractions. FEBS Lett. 289: 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh B., Ning Y. & Brenner S. 1999. Late changes in spliceosomal introns define clades in vertebrate evolution. Proc. Natl. Acad. Sci. USA 96: 10267–10271.

    Article  CAS  PubMed  Google Scholar 

  • Vincze O., Tökési N., Oláh J., Hlavanda E., Zotter á., Horváth I., Lehotzky A., Tirián L., Medzihradszky K.F., Kovács J., Orosz F., & Ovádi J. 2006. Tubulin polymerization promoting proteins (TPPPs): members of a new family with distinct structures and functions. Biochemistry 45: 13818–13826.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z., Wu C.C., Huang W.-N., Wang S., Zhao E., Huang Q., Xie Y. & Mao Y. 2002. A novel human gene whose product shares homology with bovine brain-specific protein p25 is expressed in fetal brain but not in adult brain. J. Hum. Genet. 47: 266–268.

    Article  CAS  PubMed  Google Scholar 

  • Zhou W., Wang X., Li L., Feng X., Yang Z., Zhang W. & Hu R. 2010. Depletion of tubulin polymerization promoting protein family member 3 suppresses HeLa cell proliferation. Mol. Cell. Biochem. 333: 91–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Štifanić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Štifanić, M., Batel, R. & Müller, W.E.G. Tubulin polymerization promoting protein (TPPP) ortholog from Suberites domuncula and comparative analysis of TPPP/p25 gene family. Biologia 66, 111–120 (2011). https://doi.org/10.2478/s11756-010-0147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-010-0147-y

Key words

Navigation