Skip to main content
Log in

The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal-contaminated site

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

In this study we performed a phylogenetic analysis of a culturable bacterial community isolated from heavymetal-contaminated soil from southwest Slovakia using 16S rRNA (16S rDNA) and heavy-metal resistance genes. The soil sample contained high concentrations of nickel (2,109 mg/kg), cobalt (355 mg/kg) and zinc (177 mg/kg), smaller concentrations of iron (35.75 mg/kg) and copper (32.2 mg/kg), and a trace amount of cadmium (<0.25 mg/kg). A total of 100 isolates were grown on rich (Nutrient agar No. 2) or minimal (soil-extract agar medium) medium. The isolates were identified by phylogenetic analysis using partial sequences of their 16S rRNA (16S rDNA) genes. Representatives of two broad taxonomic groups, Firmicutes and Proteobacteria, were found on rich medium, whereas four taxonomic groups, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, were represented on minimal medium. Forty-two isolates grown on rich medium were assigned to 20 bacterial species, while 58 bacteria grown on minimal medium belonged to 49 species. Twenty-three isolates carried czcA- and/or nccA-like heavy-metal-resistance determinants. The heavy-metalresistance genes of nine isolates were identified by phylogenetic analysis of their protein sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

16S rRNA:

16S ribosomal RNA

16S rDNA:

16S ribosomal DNA

czcA:

heavy-metal-resistance determinant

MM:

minimal medium

NCBI:

National Center for Biotechnology Information

nccA:

heavy-metal-resistance determinant

RM:

rich medium.

References

  • Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J Mol. Biol. 215: 403–410.

    CAS  PubMed  Google Scholar 

  • Ashraf R. & Ali T.A. 2007. Effect of heavy metals on soil microbial community and mung beans seed germination. Pak. J. Bot. 39: 629–636.

    Google Scholar 

  • Becker J.M., Parkin T., Nakatsu C.H., Wilbur J.D. & Konopka A. 2006. Bacterial activity, community structure, and centimetre-scale spatial heterogeneity in contaminated soil. Microb. Ecol. 51: 220–231.

    Article  PubMed  Google Scholar 

  • Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2010. GenBank. Nucleic Acids Res. 38 (Database issue): D46–D51.

    Article  CAS  Google Scholar 

  • Bogdanova E.S., Bass I.A., Minakhin L.S., Petrova M.A., Mindlin S.Z., Volodin A.A., Kalyaeva E.S., Tiedje J.M., Hobman J.L., Brown N.L. & Nikiforov V.G. 1998. Horizontal spread of mer operons among Gram-positive bacteria in natural environments. Microbiology 144: 609–620.

    Article  CAS  PubMed  Google Scholar 

  • Chapman P.M. 1999. The role of soil microbial tests in ecological risk assessment. Hum. Ecol. Risk Assess. 5: 657–660.

    Article  CAS  Google Scholar 

  • Chovanová K., Sládeková D., Kmeť V., Prokšová M., Harichová J., Puškárová A., Polek B. & Ferianc P. 2004. Identification and characterization of eight cadmium resistant bacterial isolates from a cadmium-contaminated sewage sludge. Biologia 59: 817–827.

    Google Scholar 

  • Ellis R.J., Morgan P., Weightman A.J. & Fry J.C. 2003. Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl. Environ. Microbiol. 69: 3223–3230.

    Article  CAS  PubMed  Google Scholar 

  • Erbe J.L., Taylor K.B. & Hall L.M. 1995. Metalloregulation of the cyanobacterial smt locus: identification of SmtB binding sites and direct interaction with metals. Nucleic Acids Res. 23: 2472–2478.

    Article  CAS  PubMed  Google Scholar 

  • Hamaki T., Suzuki M., Fudou R., Jojima Y., Kajiura T., Tabuchi A., Sen K. & Shibai H. 2005. Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J. Biosci. Bioeng. 99: 485–492.

    Article  CAS  PubMed  Google Scholar 

  • Huang C.C., Narita M., Yamagata T., Itoh Y. & Endo G. 1999. Structure analysis of a class II transposon encoding the mercury resistance of the gram-positive bacterium Bacillus megaterium MB1, a strain isolated from Minamata Bay, Japan. Gene 234: 361–369.

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol. 3: reviews0003-reviews0003.8.

  • Ji G. & Silver S. 1992. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J. Bacteriol. 174: 3684–3694.

    CAS  PubMed  Google Scholar 

  • Joseph S.J., Hugenholtz P., Sangwan P., Osborne C.A. & Janssen P.H. 2003. Laboratory cultivation of widespread and previously unculturable soil bacteria. Appl. Environ. Microbiol. 69: 7210–7215.

    Article  CAS  PubMed  Google Scholar 

  • Kandeler E., Tscherko D., Bruce K.D., Stemmer M., Hobbs P.J., Bardgett R.D. & Amelung W. 2000. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biol. Fertil. Soils 32: 390–400.

    Article  CAS  Google Scholar 

  • Khan S., Hesham A.E-L., Qiao M., Rehman S. & He J.Z. 2010. Effect of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Polut. Res. 17: 288–296.

    Article  CAS  Google Scholar 

  • Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Lane D.J. 1991. 16S/23S rRNA sequencing, pp. 115–148. In: Stackebrandt E. & Goodfellow M. (eds), Nucleic Acid Techniques in Bacterial Systematics, John Wiley & Sons, New York.

    Google Scholar 

  • Matyar F., Akkan T., Uçak Y. & Eraslan B. 2010. Aeromonas and Pseudomonas: antibiotic and heavy metal resistance species from Iskenderun Bay, Turkey (northeast Mediterranean Sea). Environ. Monit. Assess. 167: 309–320.

    Article  CAS  PubMed  Google Scholar 

  • Mera N. & Iwasaki K. 2007. Use of plate-wash samples to monitor the fates of culturable bacteria in mercuryand trichloroethylene-contaminated soils. Appl. Microbiol. Biotechnol. 77: 437–445.

    Article  CAS  PubMed  Google Scholar 

  • Mergeay M., Monchy S., Vallaeys T., Auquier V., Benotmane A., Bertin P., Taghavi S., Dunn J., Van Der Lelie D. & Wattiez R. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metalresponsive genes. FEMS Microbiol. Rev. 27: 385–410.

    Article  CAS  PubMed  Google Scholar 

  • Mitsui H., Gorlach K., LEE H.J., Hattori R. & Hattori T. 1997. Incubation time and media requirements of culturable bacteria from different phylogenetic groups. J. Microbiol. Methods 30: 103–110.

    Article  CAS  Google Scholar 

  • Mobley H.L., Chen C.M., Silver S. & Rosen B.P. 1983. Cloning and expression of R-factor mediated arsenate resistance in Escherichia coli. Mol. Gen. Genet. 191: 421–426.

    Article  CAS  PubMed  Google Scholar 

  • Nascimento A.M.A. & Chartone-Souza E. 2003. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res. 2: 92–101.

    PubMed  Google Scholar 

  • Ogilvie L.A. & Grant A. 2008. Linking pollution induced community tolerance (PICT) and microbial community structure in chronically metal polluted estuarine sediments. Mar. Environ. Res. 65: 187–198.

    Article  CAS  PubMed  Google Scholar 

  • Page R.D. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357–358.

    CAS  PubMed  Google Scholar 

  • Pandey S., Saha P., Barai P.K. & Maiti T.K. 2010. Characterization of a Cd2+ -resistant strain of Ochrobactrum sp. Isolated from slag disposal site of an iron and steel factory. Curr. Microbiol. 61: 106–111.

    Article  CAS  PubMed  Google Scholar 

  • Pechrada J., Sajjaphan K. & Sadowsky M.J. 2010. Structure and diversity of arsenic-resistant bacteria in an old tin mine area of Thailand. J. Microbiol. Biotechnol. 20: 169–178.

    Google Scholar 

  • Prakash O., Gihring T.M., Dalton D.D., Chin K.-J., Green S.J., Akob D.M., Wanger G. & Kostka J.E. 2010. Geobacter daltonii sp. nov., an Fe(III)- and uranium(VI)-reducing bacterium isolated from a shallow subsurface exposed to mixed heavy metal and hydrocarbon contamination. Int. J. Syst. Evol. Microbiol. 60: 546–553.

    Article  CAS  PubMed  Google Scholar 

  • Ranjard L., Brothier E. & Nazaret S. 2000. Sequencing bands of ribosomal intergenic spacer analysis fingerprints for characterization and microscale distribution of soil bacterium populations responding to mercury spiking. Appl. Environ. Microbiol. 66: 5334–5339.

    Article  CAS  PubMed  Google Scholar 

  • Ranjard L., Lignier L. & Chaussod R. 2006. Cumulative effect of short-term polymetal contamination on soil bacterial community structure. Appl. Environ. Microbiol. 72: 1684–1687.

    Article  CAS  PubMed  Google Scholar 

  • Rosenstein R., Peschel A., Wieland B. & Götz F. 1992. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcus xylosus plasmid pSX267. J. Bacteriol. 174: 3676–3683.

    CAS  PubMed  Google Scholar 

  • Saitou N. & Nei M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Saltikov C.W. & Olson B.H. 2002. Homology of Escherichia coli R773 arsA, arsB, and arsC genes in arsenic-resistant bacteria isolated from raw sewage and arsenic-enriched creek waters. Appl. Environ. Microbiol. 68: 280–288.

    Article  CAS  PubMed  Google Scholar 

  • Sandaa R.A., Torsvik V. & Enger Ø. 2001. Influence of long-term heavy-metal contamination on microbial communities in soil. Soil Biol. Biochem. 33: 287–295.

    Article  CAS  Google Scholar 

  • Sandaa R.A., Torsvik V., Enger Ø., Daae F.L., Castberg T. & Hahn D. 2006. Analysis of bacterial communities in heavy metal-contaminated soils at different levels of resolution. FEMS Microbiol. Ecol. 30: 237–251.

    Google Scholar 

  • Schmidt T. & Schlegel H.G. 1994. Combined nickel-cobaltcadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J. Bacteriol. 176: 7045–7054.

    CAS  PubMed  Google Scholar 

  • Silver S. & Phung L.T. 1996. Bacterial heavy metal resistance: New surprises. Ann. Rev. Microbiol. 50: 753–789. doi:10.1146/annurev.micro.50.1.753.

    Article  CAS  Google Scholar 

  • Smiejan A., Wilkinson K.J. & Rossier C. 2003. Cd bioaccumulation by a freshwater bacterium, Rhodospirillum rubrum. Environ. Sci. Technol. 37: 701–706.

    Article  CAS  PubMed  Google Scholar 

  • Taghavi S., Van Der Lelie D. & Mergeay M. 1994. Electroporation of Alcaligenes eutrophus with (mega) plasmids and genomic DNA fragments. Appl. Environ. Microbiol. 60: 3585–3591.

    CAS  PubMed  Google Scholar 

  • Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  CAS  PubMed  Google Scholar 

  • Xie X., Fu J., Wang H. & Liu J. 2010. Heavy metal resistance by two bacteria strains isolated from a copper mine tailing in China. African J. Biotechnol. 9: 4056–4066.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ferianc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karelová, E., Harichová, J., Stojnev, T. et al. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal-contaminated site. Biologia 66, 18–26 (2011). https://doi.org/10.2478/s11756-010-0145-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-010-0145-0

Key words

Navigation