Skip to main content
Log in

Comparative analysis of milt quality and steroid levels in blood and seminal fluid of Persian sturgeon males, Acipenser persicus during final maturation induced by hormonal treatment

Biologia Aims and scope Submit manuscript

Cite this article

Abstract

Steroids both in seminal fluid (SF) and blood serum (BS) as well as the milt quality (sperm motility and sperm production) were investigated during final maturation of Persian sturgeon. The BS levels of testosterone (T), 11-Ketotestosterone (11-KT), progesterone (P), 17α,20β,21-trihydroxy-4-pregnen-3-one (20βS), cortisol (C) and 17α,hydroxyprogesterone (OHP) elevated after pituitary preparation (PP) treatment and then decreased during stripping period for spermiating males. Such elevations did not occur for non-spermiating individuals and steroids remained in basal levels after PP treatment until the end of stripping period. For both groups (spermiating and non-spermiating fish), the BS levels of 17α,20β-dihydroxy-4-pregnen-3-one (DHP) did not show significant changes during experiment. During stripping period, the values of all tested steroids were significantly lower in SF than in BS of spermiating males. SF levels of 20βS and 11-KT showed a decreasing trend and the other steroids were unchanged during this period. Significant positive correlations were found between the values of 20βs and 11-KT in BS with their levels in SF. Also, BS and SF levels of 20βs and 11-KT were positively correlated with sperm motility characteristics (percentage and duration of motility) and sperm production (sperm density and milt volume), respectively. The results showed the probable involvement of 20βs, P, OHP, T, 11-KT and C in final maturation of Persian sturgeon, especially 20βs and 11-KT had good correlations with qualitative parameters of milt. The lower levels of steroids in SF than those in BS might also be essential for viability of Persian sturgeon spermatozoa. Probably, there are mechanisms that stabilize the concentrations of a number of hormones in the SF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aas G.H., Refstie T. & Gjerde B. 1991. Evaluation of milt quality of Atlantic salmon. Aquaculture 95: 125–132.

    Article  Google Scholar 

  • Alavi S.M.H. & Cosson J. 2006. Sperm motility in fishes. (II) Effects of ions and osmolality. Cell. Biol. Int. 30: 1–14. DOI: 10.1016/j.cellbi.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  • Alavi S.M.H., Cosson J. & Kazemi R. 2006. Semen characteristicsin Acipenser persicus in relation to sequential stripping. J. Appl. Ichthyol. 22(Suppl. 1): 400–405. DOI: 10.1111/j.1439-0426.2007.00994.x

    Article  Google Scholar 

  • Barannikova I.A., Bayunova L.V. & Semenkova T.B. 2004. Serum levels of testosterone, 11-ketotestosterone and oestradiol-17b in three species of sturgeon during gonadal development and final maturation induced by hormonal treatment. J. Fish. Biol. 64: 1330–1338. DOI: 10.1111/j.0022-1112.2004.00395.x

    Article  CAS  Google Scholar 

  • Barannikova I.A., Dyubin V.P., Bayunova L.V. & Semenkova T.B. 2002. Steroids in the control of reproductive function of fish. Neuroscience. Behav. Physiol. 32: 141–148. DOI: 10.1023/A:1013923308125

    Article  CAS  Google Scholar 

  • Barry T.P., Riebe J.D., Parrish J.J. & Malison J.A. 1997. Effects of 17α,20β-dihydroxy-4-pregnen-3-one on cortisol production by rainbow trout interregnal tissue in vitro. Gen. Comp. Endocrinol. 107: 172–181.

    Article  CAS  PubMed  Google Scholar 

  • Barton B.A. & Iwama G.K. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1: 3–26.

    Article  Google Scholar 

  • Barton B.A., Rahn A.B., Feist G., Bolling H. & Schreck C.B. 1998. Physiological stress responses of the fresh water chondrostean paddlefish (Polyodon spatula) to acute physical disturbances. Comp. Biochem. Physiol. A 120: 355–363.

    Article  Google Scholar 

  • Bayunova L.V., Barannikova I.A. & Semenkova T.B. 2002. Sturgeon stress reactions in aquaculture. J. Appl. Ichthyol. 18: 397–404. DOI: 10.1046/j.1439-0426.2002.00370.x

    Article  CAS  Google Scholar 

  • Bayunova L., Canario A.V.M., Semenkova T., Dyubin V., Sverdlova O., Trenkler I. & Barannikova I. 2006. Sex steroids and cortisol levels in the blood of stellate sturgeon (Acipenser stellatus Pallas) during final maturation induced by LH-RH-analogue. J. Appl. Ichthyol. 22: 334–339. DOI: 10.1111/j.1439-0426.2006.00769.x

    Article  Google Scholar 

  • Belanger J.M., Son J.H., Laugero K.D., Moberg G.P., Doroshov S.I., Lankford S.E. & Cech Jr. JJ. 2001. Effects of shortterm management stress and ACTH injections on plasma cortisol levels in cultured white sturgeon, Acipenser transmontanus. Aquaculture 203: 165–176. DOI: 10.1016/S0044-8486(01)00620-2

    Article  CAS  Google Scholar 

  • Billard R., Bry C. & Gillet C. 1981. Stress, environment and reproduction in teleost fish, pp. 185–208. In: Pickering A.D. (ed.), Stress and Fish, Academic Press, London.

    Google Scholar 

  • Canario A.V.M. & Scott A.P. 1989. Synthesis of 20-hydroxylated steroids by ovaries of the dab (Limanda limanda). Gen. Comp. Endocrinol. 76: 147–158.

    Article  CAS  PubMed  Google Scholar 

  • Fevolden S.E., Røed K.H. & Fjalestad K.T. 2002. Selection response of cortisol and lysozyme in rainbow trout and correlation to growth. Aquaculture 205: 61–75. DOI: 10.1016/S0044-8486(01)00660-3

    Article  CAS  Google Scholar 

  • Hajirezaee S., Mojazi Amiri B. & Mirvaghefi A.R. 2010. Changes in sperm production, sperm motility, and composition of seminal fluid in Caspian brown trout, Salmo trutta caspius, over the course of a spawning season. J. Appl. Aquacult. 22: 157–170.

    Article  Google Scholar 

  • Ingermann R.L., Bencic D.C. & Gloud J.G. 2002. Low seminal plasma buffering capacity corresponds to high pH sensitivity of sperm motility in salmonids. Fish Physiol. Biochem. 24: 299–307. DOI: 10.1023/A:1015037422720

    Article  Google Scholar 

  • Jalabert B. & Fostier A. 1984. The modulatory effect in vitro of oestradiol-17b, testosterone or cortisol on the output of 17ahydroxy-20-b-dihydroxyprogesterone by rainbow trout Salmo gairdneri ovarian follicles stimulated by the maturational gonadotropin s-GtH. Reprod. Nutr. Develop. 24: 127–136.

    Article  CAS  Google Scholar 

  • Kime D.E. 1993. “Classical” and “non-classical” reproductive steroids in fish. Reviews in Fish Biol. Fisheries 3: 160–180.

    Article  Google Scholar 

  • Kohneshahri M. & Azari Takami G. 1974. Artificial Propagation of Sturgeons. Tehran University Publications, pp. 46–47.

  • Lahnsteiner F., Berger B., Weismann T. & Patzner R.A. 1996. Motility of spermatozoa of Alburnus alburnus (Cyprinidae) and its relationship to seminal plasma composition and sperm metabolism. Fish Physiol. Biochem. 15: 167–179.

    Article  CAS  Google Scholar 

  • Lahnsteiner F., Berger B., Weismann T. & Patzner R.A. 1998. Determination of semen quality of the rainbow trout by sperm motility, seminal plasma parameters and spermatozoal metabolism. Aquaculture 163: 163–181. DOI: 10.1016/S0044-8486(98)00243-9

    Article  CAS  Google Scholar 

  • Milla S., Wang N., Mandiki S.N.M. & Kestemont P. 2009. Corticosteroids: Friends or foes of teleost fish reproduction? Com. Biochem. Physiol. A. 153: 242–251. DOI: 10.1016/j.cbpa.2009.02.027

    Article  CAS  Google Scholar 

  • Miura T. & Miura C.I. 2003. Molecular control mechanisms of fish spermatogenesis. Fish Physiol. Biochem. 28: 181–186. DOI: 10.1023/B:FISH.0000030522.71779.47

    Article  CAS  Google Scholar 

  • Miura T., Kasugai T., Nagahama Y. & Yamauchi. K. 1995. Acquisition of potential for sperm motility in vitro in Japanese eel Anguilla japonica. Fish. Sci. 61: 533–534.

    CAS  Google Scholar 

  • Miura T., Ninzeki M., Hirai H. & Yamauchi K. 1991b. Induction of final maturation by injection of chum salmon pituitary homogenate in the male Japanese huchen (Hucho perryi). Bull. Fac. Fish. Hokkaido Univ. 42: 16–25.

    CAS  Google Scholar 

  • Miura T., Yamauchi K., Takahashi H. & Nagahama Y. 1991a. Involvement of steroid hormones in gonadotropin-induced testicular maturation in male Japanese eel (Anguilla japonica). Bio-Med. Res. 12: 241–248.

    CAS  Google Scholar 

  • Miura T., Yamauchi K., Takahashi H. & Nagahama Y. 1992. The role of hormones in the acquisition of sperm motility in salmonid fish. J. Exp. Zool. 261: 359–363.

    Article  CAS  PubMed  Google Scholar 

  • Nagahama Y. 1983. The functional morphology of teleost gonads, pp. 223–275. In: Hoar W.S., Randall D.J. & Donaldson E.M. (eds), Fish Physiology. Academic Press, New York.

    Google Scholar 

  • Nagahama Y. 1988. Cytodifferentiation of ovarian follicle cells during oocyte growth and maturation. Cell Differentiation and Development 25,Suppl. 1: 9–14. DOI: 10.1016/0922-3371(88)90093-7

    Article  CAS  PubMed  Google Scholar 

  • Pankhurst N.W. & Van Der Kraak G. 2000. Evidence that acute stress inhibits ovarian steroidogenesis in Rain bow trout in vivo through the action of cortisol. Gen. Comp. Endocrinol. 117: 225–237.

    Article  CAS  PubMed  Google Scholar 

  • Perez L., Asturiano J.F., Martinez S., Tomas A., Olivares L., Moce E., Lavara R., Vicente J.S. & Jover M. 2003. Ionic composition and physiochemical parameters of the European eel (Anguilla anguilla) seminal plasma. Fish Physiol. Biochem. 28: 221–222.

    Article  CAS  Google Scholar 

  • Pickering A.D. 1989. Husbandry and stress in fish, pp. 157–167. In: Satellite symposium on applications of comparative endocrinology to fish culture, Almunecar-Granada, Spain.

    Google Scholar 

  • Pottinger T.G., Carrick T.R., Hughes S.E. & Balm P.H. 1996. Testosterone, 11-ketotestoster-one, and estradiol-17beta modify baseline and stress-induced interregnal and corticotropic activity in trout. Gen. Comp. Endocrinol. 104: 284–295.

    Article  CAS  PubMed  Google Scholar 

  • Rurangwa E., Kime D.E., Ollevier F. & Nash J.P. 2004. The measurement of sperm motility and factors affecting sperm quality in cultured fish. Aquaculture 234: 1–28. DOI: 10.1016/j.aquaculture.2003.12.006

    Article  Google Scholar 

  • Scott A.P., Canario A.V.M., Sherwood N.M. Warby C.M. 1991. Levels of steroids, including cortisol and 17a,20P-dihydroxy-4-pregnen-3-one, in plasma, seminal fluid, and urine of Pacific herring (Clupea harengus pallasi) and North Sea plaice (Pleuronectes platessa L.). Can. J. Zool. 69: 111–116.

    Article  CAS  Google Scholar 

  • Scott A.P., Sheldrick E.L. & Flint A.P.F. 1982. Measurement of 17 α,20 β-dihydroxy-4-pregnen-3-one in plasma of trout (Salmo gairdneri Richardson): Seasonal changes and response to salmon pituitary extract. Gen. Comp. Endocrinol. 46: 444–451.

    Article  CAS  PubMed  Google Scholar 

  • Semenkova T., Barannikova I., Kime D.E., McAllister B.G., Bayunova L., Dyubin V. & Kolmakov N. 2002. Sex steroid profiles in female and male stellate sturgeon (Acipenser stellatus Pallas) during final maturation induced by hormonal treatment. J. Appl. Ichthyol. 18: 375–381. DOI: 10.1046/j.1439-0426.2002.00368.x

    Article  CAS  Google Scholar 

  • Stanczyk F.Z., Lee J.S. & Santen R.J. 2007. Standardization of Steroid Hormone Assays: Why, How, and When? Cancer Epidemiol. Biomarkers Prev. 16: 1713–1719. DOI: 10.1158/1055-9965.EPI-06-0765

    Article  CAS  PubMed  Google Scholar 

  • Thomas P. 2004. Nongenomic steroid actions in itiated at the cell surface: Lessons from studies in fish. Fish Biochem. Physiol. 28: 3–12. DOI: 10.1023/B:FISH.0000030461.35242.57

    Article  Google Scholar 

  • Thomas P., Breckenridge-Miller D. & Detweiler C. 1997. Binding characteristics and regulation of the 17α,20β, 21-trihydroxy-4-pregnen-3-one (20βS) receptor on testicular and sperm plasma membranes of spotted seatrout (Cynoscion nebulosus). Fish Physiol. Biochem. 17: 109–116

    Article  CAS  Google Scholar 

  • Thomas P., Pinter J. & Das S. 2001. Upregulation of the maturation-inducing steroid-membrane receptor in spotted seatrout ovaries by gonadotropin during oocyte maturation and it’s physiological significance. Biol. Reprod. 64: 21–29. DOI: 10.1095/bioperiod64.1.21

    Article  CAS  PubMed  Google Scholar 

  • Thomas P., Tubbs C., Detweiler C., Das S., Ford L. & Breckenridge-Miller D. 2005. Binding characteristics, hormonal regulation and identity of the sperm membrane progestin receptor in Atlantic croaker. Steroids 70: 427–433.

    Article  CAS  PubMed  Google Scholar 

  • Thomas P., Zhu Y., Detweiler C. & Doughty K. 2004. Multiple rapid progestin actions and progestin membrane subtypes in fish. Steroids 69: 567–74.

    Article  CAS  PubMed  Google Scholar 

  • Vizziano D., Fostier A., Le Gac F. & Loir M. 1996. 20β-hydroxysteroid dehydrogenase activity in nonflagellated germ cells of rainbow trout testis. Biol. Reprod. 54: 1–7. DOI: 10.1095/bioperiod54.1.1

    Article  CAS  PubMed  Google Scholar 

  • Wendelaar Bonga S.E. 1997. The stress response in fish. Physiol. Rev. 77: 591–625.

    CAS  PubMed  Google Scholar 

  • Yaron Z. 1995. Endocrine control of gametogenesis and spawning induction in the carp. Aquaculture 129: 49–73. DOI: 10.1016/0044-8486(94)00229-H

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Hajirezaee.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hajirezaee, S., Rafiee, G.R. & Hushangi, R. Comparative analysis of milt quality and steroid levels in blood and seminal fluid of Persian sturgeon males, Acipenser persicus during final maturation induced by hormonal treatment. Biologia 66, 160–169 (2011). https://doi.org/10.2478/s11756-010-0140-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-010-0140-5

Key words

Navigation