Skip to main content
Log in

Efficacy of mosquito attractants in various habitats of a floodplain

  • Section Zoology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Efficacy of different mosquito attractants was invesigated at four sites in three plant communities (Galio-Salicetum albae, Populetum nigro-albae, Genisto elatae-Quercetum roboris) of flooded and forest habitats in Kopački rit Nature Park, Croatia. The attractants were: dry ice, horse urine, horse urine + acetone, acetone, 1-octen-3-ol and ammonium hydroxide baited CDC traps. A total of 11,441 mosquito specimens of 12 species were collected. Aedes vexans (91.43%) was the most numerous species. A statistically significant difference between the efficacy of dry ice and the other attractants was shown, whereas there was no difference between the other attractants. A greater number of specimens and species number were noted in the flooded plant communities (Populetum nigro-albae). The response of Ae. vexans to dry ice was higher in flooded sites, and it was significantly lower in forest habitat (Genisto elatae-Quercetum roboris) according to fuzzy c-means cluster analysis. The same analysis shows a higher efficacy of other attractants (horse urine, horse urine + acetone, acetone, octenol and ammonium hydroxide) in forest habitat when compared to the flooded area habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker N., Petrić D., Zgomba M., Boase C., Dahl C., Lane J. & Kaiser A. 2003. Mosquitoes and their Control. Kluwer Academic/Plenum Publishers, New York, 528 pp.

    Google Scholar 

  • Bidlingmayer W.L. 1985. The measurement of adult mosquito population changes-same considerations. J. Am. Mosq. Control Assoc. 3: 328–348.

    Google Scholar 

  • Bosch O.J., Geier M. & Boeckh J. 2000. Contribution of fatty acids to olfactory host finding of female Aedes aegypti. Chem. Senses 25: 323–330.

    CAS  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) 1999. West Nile-like viral encephalitis — New York (1999). Morb. Mortal Wkly Rep. (MMWR) 48: 890–892.

    Google Scholar 

  • Cooper R.D., Frances S.P., Popat S. & Waterson D.G.E. 2004. The effectiveness of light, 1-octen-3-ol, and carbon dioxide as attractants for Anopheline mosquitoes in Madang Province, Papua New Guinea. J. Am. Mosq. Control Assoc. 20: 239–242.

    CAS  PubMed  Google Scholar 

  • Cooperband M.F. & Cardé R.T. 2006. Comparison of plume structure of carbon dioxide emitted from different mosquito traps. Med. Vet. Entomol. 20: 1–10. DOI 10.1111/j.1365-2915.2006.00614.x

    Article  PubMed  Google Scholar 

  • Dale P.E.R., Knight J., Kay B.H., Chapman H., Ritchie S.A. & Brown M.D. 2008. Habitat characteristics and eggshell distribution of the salt marsh mosquito, Aedes vigilax, in marshes in subtropical eastern Australia. J. Insect Sci. 25: 1–8.

    Article  Google Scholar 

  • Dekker T., Geier M. & Cardé R.T. 2005. Carbon dioxide instantly sensitizes female yellow fever mosquitoes human skin odors. J. Exp. Biol. 208: 2963–2972. DOI 10.1242/jeb.01736

    Article  PubMed  Google Scholar 

  • Equihua M. 1990. FUZZY clustering of ecological data. J. Ecol. 78: 519–534.

    Article  Google Scholar 

  • Gutsevich A.V., Monchadskii A.S. & Shtakelberg A.A. 1970. Mosquitoes. Family Culicidae. Fauna of the USSR. Diptera, Nauka, Leningrad, 3(4), 384 pp. [English translation, Israel Program for Scientific Translations, Jerusalem. 1974. 408 pp.].

  • Horsfall W.R., Fowler H.W., Moretti L.J. & Larsen J.R. (eds) 1973. Bionomics and Embryology of the Inland Floodwater Mosquito Aedes vexans. University of Illinois Press, Urbana, IL, 134 pp.

    Google Scholar 

  • Hurk V.D., Montgomery B.L., Zborowski P., Beebe N.W., Cooper R.D. & Ritchie S.A. 2006. Does 1-octen-3-ol enhance trap collections of Japanese encephalitis virus mosquito vectors in northern Australia? J. Am. Mosq. Control Assoc. 22: 15–21.

    Article  PubMed  Google Scholar 

  • Jain A.K., Murty MN. & Flynn P.J. 1999. Data Clustering: A Review. ACM Computing Surveys 3: 264–323.

    Article  Google Scholar 

  • Johansen C.A., Montgomery B.L., Mackenzie J.S. & Ritchie S.A. 2003. Efficacies of the Mosquito Magnet and counter flow geometry traps in North Queensland, Australia. J. Am.Mosq. Control Assoc. 19: 265–270.

    PubMed  Google Scholar 

  • Jordan A.M. 1995. Control of tsetse flies (Diptera: Glossinidae) with the aid of attractants. J. Am. Mosq. Control Assoc. 11: 249–255.

    CAS  PubMed  Google Scholar 

  • Kline D.L., Takken W., Wood J.R. & Carlson D.A. 1990. Field studies on the potential of butanol, carbon dioxide, honey extract, 1-octen-3-ol, L-lactic acid, and phenols as attractants for mosquitoes. Med. Vet. Entomol. 4: 383–391. DOI 10.1111/j.1365-2915.1990.tb00455.x

    Article  CAS  PubMed  Google Scholar 

  • Kline D.L. 1994. Olfactory attractants for mosquito surveillance and control: 1-octen-3-ol J. Am. Mosq. Control Assoc. 10:280–287.

    CAS  PubMed  Google Scholar 

  • Kline D.L 2006. Traps and trapping techniques for adult mosquito control. J. Am. Mosq. Control Assoc. 3: 490–496.

    Article  Google Scholar 

  • Maechler M. 2008. The Cluster Package Version 1.11.10. Cluster Analysis Extended Rousseeuw et al., Anja Struyf and Mia Hubert, 73 pp.

  • Merdić E. 1993. Mosquitoes (Diptera, Culicidae) of the special zoological reserve Kopački rit (NE Croatia). Natura Croatica 1: 47–54.

    Google Scholar 

  • Merdić E. & Lovaković T. 1999. Comparison of mosquito fauna in Kopački rit in the period 1990–1998. Natura Croatica 4:431–438.

    Google Scholar 

  • Merdić E., Krčmar S., Sudarić Bogojević M. & Jeličić Ž. 2007. Response of mosquito to different synthetic and natural olfactory attractants (Diptera: Culicoidae). Entomol. Gener. 4: 253–261.

    Google Scholar 

  • Merdić E. & Sudarić M. 2003. Effects of prolonged high water level on the mosquito fauna in Kopački rit Nature Park. Perod. Bil. 2: 198–193.

    Google Scholar 

  • Merdić E., Sudrarić M., Lovaković T., Boca I. & Merdić S. 2004. Checklist of mosquitoes (Diptera, Culicidea) of Croatia. Eur. Mosq. Bull. 17: 8–13.

    Google Scholar 

  • Mihaljević M., Getz D., Tadić Ž., Živanović B., Gucunski D., Topić J., Kalinović I. & Mikuska J. 1999. Kopački rit. Pregled istraživanja i bibliografija. HAZU, Zavod za znanstveni rad Osijek, Zagreb-Osijek, 188 pp.

    Google Scholar 

  • Mihok S., Carlson D.A. & Ndegwa P.N. 2007. Tsetse and other biting fly responses to Nzi traps baited with octenol, phenols and acetone. Med. Vet. Entomol. 21: 70–84. DOI 10.1111/j.1365-2915.2007.00665.x

    Article  CAS  PubMed  Google Scholar 

  • Miller R.J., Wing J., Cope S., Davey R.D. & Kline D.L. 2005. Comparison of carbon dioxide-and octenol-baited encephalitis virus surveillance mosquito traps at the shoal water bay training area, Queensland, Australia. J. Am. Mosq. Control Assoc. 4: 497–500.

    Article  Google Scholar 

  • Newhouse V.F., Chamberlain R.W., Johnstone J.G. & Sudia W.D. 1966. Use of dry ice to increase mosquito catches of the CDC miniature light traps. Mosquito News. 26: 30–35.

    Google Scholar 

  • Pope K., Masuoka P., Rejmankova E., Grieco J., Johnson S. & Roberts D. 2005. Mosquito habitats, land use, and malaria risk in Belize from satellite imagery. Ecol. Soc. Amer. 15:1223–1232.

    Google Scholar 

  • R Development Core Team 2007. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0.

    Google Scholar 

  • Rauš Đ. 1976 Vegetacija ritskih šuma dijela Podunavlja od Aljmaša do Iloka. Annales pro Experimentis Foresticis 19: 5–75

    Google Scholar 

  • Rudolfs W. 1922. Chemotropism of mosquitoes. New Jersey Agr. Exp. Sta. Bull. 367: 5–23.

    Google Scholar 

  • Rueda L.M., Harrison B.A., Brown J.S., Whitt P.B., Harrison R.L. & Gardner R.C. 2001. Evaluation of 1-octen-3-ol, carbon dioxide, and light as attractants for mosquitoes associated with two distinct habitants in North Carolina. J. Am. Mosq. Control Assoc. 17: 61–66.

    CAS  PubMed  Google Scholar 

  • Schaffner F., Angel G., Geoffroy B., Hervy J.P., Rhaiem A. & Brunhes J. 2001. The Mosquitoes of Europe/Les moustiques d’Europe. An Identification and Training Programme (CDRom), Montpellier, France: IRD Éditions & EID Méditerranée.

    Google Scholar 

  • Service M.W. 1976. Mosquito Ecology: Field Publishers Sampling Methods. Wiley, New York, 583 pp.

    Google Scholar 

  • Topić J. 1989. Vegetation of the special zoological reserve of Kopački rit. Hydrobiology 182: 149–160.

    Article  Google Scholar 

  • Van Essen P.V.H.A., Kemme J.A., Ritchie S.A. & Kay B.H. 1994. Differential responses of Aedes and Culex mosquitoes to octenol or light in combination with carbon dioxide in Queensland, Australia. Med. Vet. Entomol. 8: 63–67.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrih Merdić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merdić, E., Jeličić, Ž., Krčmar, S. et al. Efficacy of mosquito attractants in various habitats of a floodplain. Biologia 65, 545–551 (2010). https://doi.org/10.2478/s11756-010-0051-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-010-0051-5

Key words