Biologia

, Volume 64, Issue 2, pp 377–382 | Cite as

Acceptance of low-saponin lines of alfalfa with varied phenolic concentrations by pea aphid (Homoptera: Aphididae)

Article

Abstract

This research aims to examine the effect of phenolics on pea aphid (Acyrthosiphon pisum) (Homoptera: Aphididae) development and feeding behaviour, on leaves of selected low-saponin lines of Radius alfalfa (Medicago sativa). There was a slight, negative correlation (Spearman rank correlation rs = −0.80) between concentrations of saponins and phenols. Lines with higher concentrations of saponins had less phenolics. Levels of phenolics in low-saponin lines of alfalfa cv. Radius were related to their acceptance by the pea aphid. Our data revealed an inverse relationship between level of phenolics and the aphid abundance and its biology on studied alfalfa lines. Larval development of the pea aphid was longer, reproduction period was shorter, and the fecundity was lower on low-saponin lines with higher level of phenolics. There were observed some tendencies in the pea aphid feeding behaviour on these lines: prolonging the probing of the peripheral tissues (epidermis and mesophyll) and shortening the period of phloem sap ingestion. The better hosts for the pea aphid were low-saponin lines with low levels of phenolic compounds.

Key words

pea aphid phenolics saponins alfalfa aphid feeding behaviour 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adel M.M., Sehnal F. & Jurzysta M. 2000. Effects of alfalfa saponins on the moth Spodoptera littoralis. J. Chem. Ecol. 26: 1065–1078. DOI 10.1023/A:1005445217004CrossRefGoogle Scholar
  2. Agrell J., Oleszek W., Stochmal A., Olsen M. & Anderson P. 2003. Herbivore-induced responses in alfalfa (Medicago sativa). J. Chem. Ecol. 29: 303–320. DOI 10.1023/A:1022625 810395CrossRefGoogle Scholar
  3. Ali R.M. & Abbas H.M. 2003. Response of salt stressed barley seedlings to phenylurea. Plant Soil Environ. 49: 158–162.Google Scholar
  4. Apablaza H.J.V. & Robinson A.G. 1967. Effects of three species of grain aphids (Homoptera: Aphididae) reared on wheat, oats or barley and transfered as adult to wheat, oats and barley. Entomol. Exp. Appl. 10: 358–362.CrossRefGoogle Scholar
  5. Awmack C.S. & Leather S.R. 2002. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47: 817–844.PubMedCrossRefGoogle Scholar
  6. Ayaz F.A., Kadioglu A. & Turgut R. 2000. Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rosc.) Eichler. Can. J. Plant Sci. 80: 373–378.Google Scholar
  7. Berenbaum M.R. 1985. Synergistic action among allelochemicals in crop plans, p. 75. In: Proceedings, 190ASC Nat. Meet., 8–13 September, Chicago.Google Scholar
  8. Birch L.C. 1948. The intrinsic rate of natural increase an insect population. J. Anim. Ecol 17: 15–26.CrossRefGoogle Scholar
  9. Cambier V., Hance T. & de Hoffmann E. 2000. Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry 53: 223–229.PubMedCrossRefGoogle Scholar
  10. Cichocka E., Leszczyński B. & Goszczyński W. 1999. Effect of phenolic compounds on acceptance of broad bean cultivars by black bean aphid, Aphis fabae (Scop.), pp. 169–175. In: Cichocka E., Ruszkowska M., Goszczynski W. & Ciepielewska D. (eds), Aphids and other Homopterous Insects, Polish Academy of Science, Olsztyn.Google Scholar
  11. Cole R.A. 1984. Phenolic acids associated with the resistance of lettuce cultivars to the lettuce root aphid. Ann. Appl. Biol. 105: 129–145.CrossRefGoogle Scholar
  12. Delalonde M., Barret Y. & Coumans M.P. 1996. Development of phenolic compounds in maize anthers (Zea mays) during cold pretreatment prior to endrogenesis. J. Plant Physiol. 149: 612–616.Google Scholar
  13. Dreyer D.L. & Jones K.C. 1981. Feeding deterency of flavonoids and related phenolics towards Schizaphis graminum and Myzus persicae, aphid feeding deterrents in wheat. Phytochemistry 20: 2489–2493.CrossRefGoogle Scholar
  14. Eleftherianos I., Vamvatsikos P., Ward D. & Gravanis F. 2006. Changes in the levels of plant total phenols and free amino acids induced by two cereal aphids and effects on aphid fecundity. J. Appl. Entomol. 130: 15–19.CrossRefGoogle Scholar
  15. Goławska S. 2006. Effect of phenolic compounds on acceptance of alfalfa lines by pea aphid, Acyrthosiphon pisum (Harris), pp. 31–39. In: Wilkaniec B. (ed.), Aphids and other Hemipterous Insects, Polish Entomological Society, Poznań.Google Scholar
  16. Goławska S. 2007. Deterrence and toxicity of plant saponins for the pea aphid Acyrthosiphon pisum Harris. J. Chem Ecol. 33: 1598–1606. DOI 10.1007/s10886-007-9333-yPubMedCrossRefGoogle Scholar
  17. Goławska S., Leszczynski B. & Staszewski Z. 2005. Saponin as a source of alfalfa resistance towards pea aphid, Acyrthosiphon pisum, pp. 45–50. In: Nicholas A., Birch E. & Leszczynski B. (eds), Breeding for Plant Resistance to Pests and Diseases, IOBC, Białowieża.Google Scholar
  18. Goławska S., Leszczynski B. & Oleszek W. 2006. Effect of low and high-saponin lines of alfalfa on pea aphid. J. Insect Physiol. 52: 737–743. DOI 10.1016/j.jinsphys.2006.04.001CrossRefGoogle Scholar
  19. Goławska S., Łukasik I. & Leszczyński B. 2008. Effect of alfalfa saponins and flavonoids on pea aphid. Entomol. Exp. Appl. 128: 147–153.CrossRefGoogle Scholar
  20. Guenzi W.D. & McCalla T.M. 1966. Phenolic acids in oats, wheat, sorghum and corn and their phytotoxicity. Agron. J. 58: 303–304.Google Scholar
  21. Havlickowa H. 1995. Some characteristics of flag leaves of two winter wheat cultivars infested by rose-grain aphid, Metopolophium dirhodum (Walker). J. Plant Dis. Prot. 102: 530–535.Google Scholar
  22. Jones K.C. & Klocke J.A. 1987. Aphid feeding deterrency of ellagitannins, their phenolic hydrolysis products and related phenolic derivatives. Entomol. Exp. Appl. 44: 229–234.CrossRefGoogle Scholar
  23. Jordens-Rotger D. 1979. The role of phenolic substances for hostselection behaviour of the black bean aphid, Aphis fabae. Entomol. Exp. Appl. 26: 49–54.Google Scholar
  24. Kain W.M. & Biggs D.R. 1980. Effect of pea aphid and bluegreen lucerne aphid (Acyrthosiphon spp.) on coumestrol levels in herbage of lucerne (Medicago sativa). N. Z. J. Agric. Res. 23: 563–567.Google Scholar
  25. Kjćr C., Elmegaard N., Bruus Pedersen M., Damgaard C. & Nielsen J.K. 2001. Phenolic compounds and mortality of herbivorous larvae. Pest. Res. 55: 1–94.Google Scholar
  26. Leszczyński B. 1996. Kurs praktyczny w zakresie chemicznych interakcji owady-rośliny na przykładzie mszyc (Aphidoidea) [Practical manual for chemical interactions between insects and their host plants on the example of Aphidoidea]. WSRP, Siedlce, 390 pp.Google Scholar
  27. Leszczynski B. 1999. Plant allelochemicals in aphid management, pp. 385–320. In: Narwal S.S. (ed.), Allelopathy Update, Basic and Applied Aspects, Science Publishers Inc., Enfield.Google Scholar
  28. Leszczynski B., Wright L.C. & Bakowski, T. 1989. Effect of secondary plant substances on winter wheat resistance to grain aphid. Entomol. Exp. Appl. 52: 135–139.CrossRefGoogle Scholar
  29. Leszczyński B., Jozwiak B., Urbanska A. & Dixon A.F.G. 2003. Does cyanogenesis influence host alternation of bird cherryoat aphid? Electronic Journal of Polish Agricultural Universities, [www document]. http://www.ejpau.media.pl/articles/volume6/issue1/biology/art-01.pdf (accessed 01.03.2003)
  30. Matsuda K., Kaneko M., Kusaka K., Shishido T. & Tamaki Y. 1998. Soyasaponins as feeding stimulants to the oriental clouded yellow larva, Colias erate poliographus (Lepidoptera: Pieridae). Appl. Entomol. Zool. 33: 255–258.Google Scholar
  31. Montlor C.B., Campbell B.C. & Mittler T.E. 1990. Responses of Schizaphis graminum (Homoptera: Aphididae) to leaf excision in resistant and susceptible sorghum. Ann. Appl. Biol. 116: 189–198.CrossRefGoogle Scholar
  32. Nozzolillo C., Arnason J.T., Campos F., Donskov N. & Jurzysta M. 1997. Alfalfa leaf saponins and insects resistance. J. Chem. Ecol. 23: 995–1002. DOI 10.1023/B:JOEC.0000006384.60488.94CrossRefGoogle Scholar
  33. Oleszek W. 1999. Allelopathic significance of plant saponins, pp. 167–178. In: Macias F.A., Galindo J.C.G., Monilillo J.M.G. & Cutler H.G. (eds), Recent Advances in Allelopathy. A Science for the Future, Servicio de Publicaciones-Universidad de Cadiz, Cadiz, Spain.Google Scholar
  34. Oleszek W., Hoagland R.E. & Zablotovicz R.M. 1999. Ecological significance of plant saponins, pp. 451–465. In: Inderjit K.M.M. & Dakshini Foy C.L. (eds), Principles and Practices in Plant Ecology: Allelochemical Ineractions, CRC Press, New York.Google Scholar
  35. Oleszek W., Jurzysta M., Płoszyński M., Colquhoun I.A., Price K.R. & Fenwick G.R. 1992. Zahnic acid tridesmoside and other dominant saponins from alfalfa (Medicago sativa L.) aerial parts. J. Agric. Food Chem. 40: 191–196. DOI 10.1021/jf00014a005CrossRefGoogle Scholar
  36. Pecetti L., Tava A., Romani M., De Benedetto M.G. & Corsi P. 2006. Variety and environment effects on the dynamics of saponins in Lucerne (Medicago sativa L.). Eur. J. Agronomy 25: 187–192. DOI 10.1016/j.eja.2006.04.013CrossRefGoogle Scholar
  37. Pettersson J., Pickett J.A., Pye B.J., Quiroz A., Smart L.E., Wadhams L.J. & Woodcock C.M. 1994. Winter host component reduces colonization by bird cherry oat aphid Rhopalosiphum padi (L.) (Homoptera: Aphididae), and other aphids in cereal fields. J. Chem. Ecol. 20: 2565–2574. DOI 10.10007/BF02036 192CrossRefGoogle Scholar
  38. Ponder K.L., Pritchard J., Harrington R. & Bale J.S. 2000. Difficulties in location and acceptance of phloem sap combined with reduced concentration of phloem amino acids explain lowered performance of the aphid Rhopalosiphum padi on nitrogen deficient barley (Hordeum vulgare) seedlings. Entomol. Exp. Appl. 97: 203–210.CrossRefGoogle Scholar
  39. Rice-Evans C.A. & Miller N.J. 1998. Structure antioxidant activity relationships of flavonoids and isoflavonoids, pp. 199–220. In: Rice-Evans C.A. & Packer L. (eds), Flavonoids in health and disease, Marcel Dekker Inc., New York.Google Scholar
  40. Ridsdill-Smith J., Edwards O., Wang S.F., Ghisalberti E. & Reidy-Crofts J. 2004. Aphid response to plant defensive compounds, pp. 491–497. In: Simon J.C., Dedryver C.A., Rispe C. & Hulle M. (eds), Aphid in a New Millenium, INRA, Paris, France.Google Scholar
  41. Sandström J., Telang A. & Moran N.A. 2000. Nutritional enhancement of host plants by aphids — a comparison of three aphid species on grasses. J. Insect Physiol. 46: 33–40.PubMedCrossRefGoogle Scholar
  42. Singh M., Singh S.S. & Sanwal G.G. 1978. A new colorimetric method for the determination of phenolics. Indian J. Exp. Biol. 16: 712–714.Google Scholar
  43. Sokal R.R. & Rohlf F.J. 2001. Biometry, 3rd edn. Freeman & Co., New York.Google Scholar
  44. Stochmal A., Piacente S., Pizza C., De Riccardis F., Leitz R. & Oleszek W. 2001a. Alfalfa (Medicago sativa) flavonoids. 1. Apigenin and luteolin glycosides from aerial parts. J. Agric. Food Chem. 49: 753–758. DOI 10.1021/jf000876pPubMedCrossRefGoogle Scholar
  45. Stochmal A., Simonet A.M., Macias F.A. & Oleszek W. 2001b. Alfafa (Medicago sativa L.) flavonoids. 2. Tricin and chrysoeriol glycosides from aerial parts. J. Agric. Food Chem. 49: 5310–5314. DOI 10.1021/jf010600xPubMedCrossRefGoogle Scholar
  46. Szynkarczyk S., Leszczynski B., Oleszek W. & Staszewski Z. 2001. Development of pea aphid, Acyrthosiphon pisum (Harris) on alfalfa lines varied in saponin content, pp. 121–130. In: Cichocka E., Goszczynski W., Leszczynski B., Ruszkowska M. & Wojciechowski W. (eds), Aphids and Other Homopterous Insects, Polish Academy of Science, Siedlce.Google Scholar
  47. Tjallingii W.F. 1988. Electrical recording of stylet penetration activities by aphids, pp. 89–99. In: Campbell R.K. & Eikenbary R.D. (eds), Aphid — Plant Genotype Interactions, Elsevier, Amsterdam.Google Scholar
  48. Tjallingii W.F. 1990. Continuous recording of stylet penetration activities by aphids, pp. 88–89. In: Campbell R.K. & Eikenbary R.D. (eds), Aphid — Plant Genotype Interactions, Elsevier, Amsterdam.Google Scholar
  49. Todd G.W., Getahun A. & Cress G.S. 1971. Resistance in barley to the greenbug, Schizaphis graminum. I. Toxicity of phenolic and flavonoid compounds and related substances. Ann. Entomol. Soc. Am. 64: 718–722.Google Scholar
  50. Urbanska A., Leszczynski B., Matok H. & Dixon A.F.G. 2004. Hydrolysis of plant glycosides by cereal aphids, pp. 491–497. In: Simon J.C., Dedryver C.A., Rispe C. & Hulle M. (eds), Aphid in a New Millenium, INRA, Paris, France.Google Scholar
  51. Wurms K.V., George M.P. & Layren D.R. 2003 Involvement of phenolic compounds in host resistance against Botrytis cinerea in leaves of the two commercially important kiwifruit (Actinidia chinensis and A. deliciosa) cultivars. N. Z. J. Crop Hort. Sci. 31: 221–233.Google Scholar
  52. Wyatt I.J. & White P.F. 1977. Simple estimation of intrinsic rates for aphids and tetranychid mites. J. Appl. Ecol. 14: 757–766.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.University of PodlasieSiedlcePoland

Personalised recommendations