Skip to main content
Log in

Overexpression of an optimized Aspergillus sulphureus β-mannanase gene in Pichia pastoris

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

β-Mannanase (EC 3.2.1.78) is a key enzyme to hydrolyze the β-mannosidic linkages in mannan and heteromannan. The expression of a wild type β-mannanase (manWT) of Aspergillus sulphureus in Pichia pastoris is not high enough for its application in feed supplement. To earn a high expression level, the manWT gene was firstly optimized to manM according to the code bias of P. pastoris, which was then inserted into pPICzαA and transformed into P. pastoris strain X-33. In the induction by methanol, β-mannanase was expressed in high level with 32% increase in comparison with the manWT gene expressed in P. pastoris in shaken flask. In a 10-L fermenter, the manM was expressed in 9-fold higher level than that in shaken flask, which yielded the enzyme activity of 1100 U/mL. This is the first study on codon bias effect on the β-mannanase gene expression level, which helps to achieve high β-mannanase yield and enzymatic activity in P. pastoris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

manM:

modified β-mannanase gene

manWT:

wild type β-mannanase gene

References

  • Chen X.L., Cao Y.H., Ding Y.H., Lu W.Q. & Li D.F. 2007. Cloning, functional expression and characterization of Aspergillus sulphureus β-mannanase in Pichia pastoris. J. Biotechnol. 128: 452–461.

    Article  PubMed  CAS  Google Scholar 

  • Christgau S., Kauppinen S., Vind J., Kofod L.V. & Dalbøge H. 1994. Expression cloning, purification and characterization of a β-1, 4-mannanase from Aspergillus aculeatus. Biochem. Mol. Biol. Int. 33: 917–925.

    PubMed  CAS  Google Scholar 

  • Daskiran M., Teeter R.G., Fodge D.W. & Hsiao H.Y. 2004. An evaluation of endo-β-D-mannanase (Hemicell) effects on broiler performance and energy use in diets varying in β-mannan content. Poultry Sci. 83: 662–668.

    CAS  Google Scholar 

  • Edwards C.A., Johnson I.T. & Read N.W. 1988. Do viscous polysaccharides slow absorption by inhibiting diffusion or convection? Eur. J. Clin. Nutr. 42: 307–312.

    PubMed  CAS  Google Scholar 

  • Jackson M.E., Geronian K., Knox A., McNab J. & McCartney E. 2004. A dose-response study with the feed enzyme β-mannanase in broilers provided with corn-soybean meal based diets in the absence of antibiotic growth promoters. Poultry Sci. 83: 1992–1996.

    CAS  Google Scholar 

  • Lu W.Q., Li D.F. & Wu Y.B. 2003. Influence of water activity and temperature on xylanase biosynthesis in pilot-scale solid-state fermentation by Aspergillus sulphureus. Enzyme Microb. Technol. 32: 305–311.

    Article  CAS  Google Scholar 

  • Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  • Pettey L.A., Carter S.D., Senne B.W. & Shriver J.A. 2002. Effects of β-mannanase addition to corn-soybean meal diets on growth performance, carcass traits, and nutrient digestibility of weaning and growing-finishing pigs. J. Anim. Sci. 80: 1012–1019.

    PubMed  CAS  Google Scholar 

  • Ray S., Pubols M.H. & McGinnis J. 1982. The effect of a purified guar degrading enzyme on chick growth. Poultry Sci. 61: 488–494.

    CAS  Google Scholar 

  • Reddy S.T., Kumar S.N., Haas A.L. & Dahms N.M. 2003. Biochemical and functional properties of the full-length cation-dependent mannose 6-phosphate receptor expressed in Pichia pastoris. Biochem. Biophys. Res. Commun. 309: 643–651.

    Article  PubMed  CAS  Google Scholar 

  • Setati M.E., Ademark P., van Zyl W.H., Hahn-Hägerdal B. & Stålbrand H. 2001. Expression of the Aspergillus aculeatus endo-β-1,4-mannanase encoding gene (man1) in Saccharomyces cerevisiae and characterization of the recombinant enzyme. Protein Express. Purif. 21: 105–114.

    Article  CAS  Google Scholar 

  • Sharp P.M. & Li W.H. 1986. An evolutionary perspective on synonymous codon usage in unicellular organisms, J. Mol. Evol. 24: 28–38.

    Article  PubMed  CAS  Google Scholar 

  • Stålbrand H., Saloheimo A., Vehmaanperä J., Henrissat B. & Penttilä M. 1995. Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reeseisß-mannanase gene containing a cellulose binding domain. Appl. Environ. Microbiol. 61: 1090–1097.

    PubMed  Google Scholar 

  • Xiong A.S., Yao Q.H., Peng R.H., Han P.L., Cheng Z.M. & Li Y. 2005. High level expression of a recombinant acid phytase gene in Pichia pastoris. J. Appl. Microbiol. 98: 418–428.

    Article  PubMed  CAS  Google Scholar 

  • Xu B., Sellos D. & Janson J.C. 2002. Cloning and expression Pichia pastoris of a blue mussel (Mytilus edulis) β-mannanase gene. Eur. J. Biochem. 269: 1753–1760.

    Article  PubMed  CAS  Google Scholar 

  • Zhao X., Huo K.K. & Li Y.Y. 2000. Synonymous codon usage in Pichia pastoris. Chinese J. Biotechnol. 16: 308–311.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhe Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Qiao, J., Yu, H. et al. Overexpression of an optimized Aspergillus sulphureus β-mannanase gene in Pichia pastoris . Biologia 64, 235–238 (2009). https://doi.org/10.2478/s11756-009-0043-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0043-5

Key words

Navigation