Skip to main content
Log in

Commercial high-throughput sequencing and its applications in DNA analysis

  • Review
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

DNA sequences can be used for the analysis of genetic variation and gene function. The high-throughput sequencing techniques that have been developed over the past three years can read as many as one billion bases per run, and are far less expensive than the traditional Sanger sequencing method. Therefore, the high-throughput sequencing has been applied extensively to genomic analyses, such as screening for mutations, construction of genomic methylation maps, and the study of DNA-protein interactions. Although they have only been available for a short period, high-throughput sequencing techniques are profoundly affecting many of the life sciences, and are opening out new potential avenues of research. With the highly-developed commercial high-throughput sequencing platforms, each laboratory has the opportunity to explore this research field. Therefore, in this paper, we have focused on commercially-popular high-throughput sequencing techniques and the ways in which they have been applied over the past three years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

ChIP:

chromatin immunoprecipitation

OUT:

operational taxonomic unit

References

  • Barski A., Cuddapah S., Cui K., Roh T.Y., Schones D.E., Wang Z., Wei G., Chepelev I. & Zhao K. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129: 823–837.

    Article  PubMed  CAS  Google Scholar 

  • Bayley H. 2006. Sequencing single molecules of DNA. Curr. Opin. Chem. Biol. 10: 628–637.

    Article  PubMed  CAS  Google Scholar 

  • Bennett S. 2004. Solexa Ltd. Pharmacogenomics 5: 433–438.

    Article  PubMed  Google Scholar 

  • Bennett S.T., Barnes C., Cox A., Davies L. & Brown C. 2005. Toward the 1,000 dollars human genome. Pharmacogenomics 6: 373–382.

    Article  PubMed  CAS  Google Scholar 

  • Bentley D.R. 2006. Whole-genome re-sequencing. Curr. Opin. Genet. Dev. 16: 545–552.

    Article  PubMed  CAS  Google Scholar 

  • Blazej R.G., Kumaresan P. & Mathies R.A. 2006. Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proc. Natl. Acad. Sci. USA 103: 7240–7245.

    Article  PubMed  CAS  Google Scholar 

  • Blow N. 2007. Genomics: the personal side of genomics. Nature 449: 627–630.

    Article  PubMed  CAS  Google Scholar 

  • Boyle A.P., Davis S., Shulha H.P., Meltzer P., Margulies E.H., Weng Z., Furey T.S. & Crawford G.E. 2008. High-resolution mapping and characterization of open chromatin across the genome. Cell 132: 311–322.

    Article  PubMed  CAS  Google Scholar 

  • Cao X., Springer N.M., Muszynski M.G., Phillips R.L., Kaeppler S. & Jacobsen S.E. 2000. Conserved plant genes with similarity to mammalian de novo DNA methyltransferases. Proc. Natl. Acad. Sci. USA 97: 4979–4984.

    Article  PubMed  CAS  Google Scholar 

  • Cokus S.J., Feng S., Zhang X., Chen Z., Merriman B., Haudenschild C.D., Pradhan S., Nelson S.F., Pellegrini M. & Jacobsen S.E. 2008. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452: 215–219.

    Article  PubMed  CAS  Google Scholar 

  • Denver D.R., Morris K. & Thomas W.K. 2003. Phylogenetics in Caenorhabditis elegans: an analysis of divergence and out-crossing. Mol. Biol. Evol. 20: 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Edwards R.A., Rodriguez-Brito B., Wegley L., Haynes M., Breitbart M., Peterson D.M., Saar M.O., Alexander S., Alexander Jr. E.C. & Rohwer F. 2006. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7: 57.

    Article  PubMed  Google Scholar 

  • Fields S. 2007. Molecular biology. Site-seeing by sequencing. Science 316: 1441–1442.

    Article  PubMed  CAS  Google Scholar 

  • Forrest W.F. & Cavet G. 2007. Comment on “The consensus coding sequences of human breast and colorectal cancers”. Science 317: 1500.

    Article  PubMed  CAS  Google Scholar 

  • Fredlake C.P., Hert D.G., Kan C.W., Chiesl T.N., Root B.E., Forster R.E. & Barron A.E. 2008. Ultrafast DNA sequencing on a microchip by a hybrid separation mechanism that gives 600 bases in 6.5 minutes. Proc. Natl. Acad. Sci. USA 105: 476–481.

    Article  PubMed  CAS  Google Scholar 

  • Getz G., Hofling H., Mesirov J.P., Golub T.R., Meyerson M., Tibshirani R. & Lander E.S. 2007. Comment on “The consensus coding sequences of human breast and colorectal cancers”. Science 317: 1500.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg S.M.D., Johnson J., Busam D., Feldblyum T., Ferriera S., Friedman R., Halpern A., Khouri H., Kravitz S.A. & Lauro F.M. 2006. A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc. Natl. Acad. Sci. USA 103: 11240–11245.

    Article  PubMed  CAS  Google Scholar 

  • Hall N. 2007. Advanced sequencing technologies and their wider impact in microbiology. J. Exp. Biol. 210: 1518–1525.

    Article  PubMed  CAS  Google Scholar 

  • Harris T.D., Buzby P.R., Babcock H., Beer E., Bowers J., Braslavsky I., Causey M., Colonell J., Dimeo J., Efcavitch J.W., Giladi E., Gill J., Healy J., Jarosz M., Lapen D., Moulton K., Quake S.R., Steinmann K., Thayer E., Tyurina A., Ward R., Weiss H. & Xie Z. 2008. Single-molecule DNA sequencing of a viral genome. Science 320: 106–109.

    Article  PubMed  CAS  Google Scholar 

  • Hillier L.W., Marth G.T., Quinlan A.R., Dooling D., Fewell G., Barnett D., Fox P., Glasscock J.I., Hickenbotham M., Huang W., Magrini V.J., Richt R.J., Sander S.N., Stewart D.A., Stromberg M., Tsung E.F., Wylie T., Schedl T., Wilson R.K. & Mardis E.R. 2008. Whole-genome sequencing and variant discovery in C. elegans. Nat. Methods 5: 183–188.

    Article  PubMed  CAS  Google Scholar 

  • Hodges E., Xuan Z., Balija V., Kramer M., Molla M.N., Smith S.W., Middle C.M., Rodesch M.J., Albert T.J., Hannon G.J. & McCombie W.R. 2007. Genome-wide in situ exon capture for selective resequencing. Nat. Genet. 39: 1522–1527.

    Article  PubMed  CAS  Google Scholar 

  • Hutchison C.A., 3rd. 2007. DNA sequencing: bench to bedside and beyond. Nucleic Acids Res. 35: 6227–6237.

    Article  PubMed  CAS  Google Scholar 

  • Jia D., Jurkowska R.Z., Zhang X., Jeltsch A. & Cheng X. 2007. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449: 248–251.

    Article  PubMed  CAS  Google Scholar 

  • Johnson D.S., Li W., Gordon D.B., Bhattacharjee A., Curry B., Ghosh J., Brizuela L., Carroll J.S., Brown M., Flicek P., Koch C.M., Dunham I., Bieda M., Xu X., Farnham P.J., Kapranov P., Nix D.A., Gingeras T.R., Zhang X., Holster H., Jiang N., Green R.D., Song J.S., McCuine S.A., Anton E., Nguyen L., Trinklein N.D., Ye Z., Ching K., Hawkins D., Ren B., Scacheri P.C., Rozowsky J., Karpikov A., Euskirchen G., Weissman S., Gerstein M., Snyder M., Yang A., Moqtaderi Z., Hirsch H., Shulha H.P., Fu Y., Weng Z., Struhl K., Myers R.M., Lieb J.D. & Liu X.S. 2008. Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets. Genome Res. 18: 393–403.

    Article  PubMed  Google Scholar 

  • Johnson D.S., Mortazavi A., Myers R.M. & Wold B. 2007. Genome-wide mapping of in vivo protein-DNA interactions. Science 316: 1497–1502.

    Article  PubMed  CAS  Google Scholar 

  • Lang X.Y., Wang J. & Chi X.B. 2008. The research progress of tiling array technology and applications. Chinese Sci. Bull. 53: 817–824.

    Article  CAS  Google Scholar 

  • Li X., Wang X., He K., Ma Y., Su N., He H., Stolc V., Tongprasit W., Jin W., Jiang J., Terzaghi W., Li S. & Deng X.W. 2008. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20: 259–276.

    Article  PubMed  CAS  Google Scholar 

  • Mardis E.R. 2006. Anticipating the 1,000 dollar genome. Genome Biol. 7: 112.

    Article  PubMed  Google Scholar 

  • Mardis E.R. 2007. ChIP-seq: welcome to the new frontier. Nat. Methods 4: 613–614.

    Article  PubMed  CAS  Google Scholar 

  • Margulies M., Egholm M., Altman W.E., Attiya S., Bader J.S., Bemben L.A., Berka J., Braverman M.S., Chen Y.J., Chen Z., Dewell S.B., Du L., Fierro J.M., Gomes X.V., Godwin B.C., He W., Helgesen S., Ho C.H., Irzyk G.P., Jando S.C., Alenquer M.L., Jarvie T.P., Jirage K.B., Kim J.B., Knight J.R., Lanza J.R., Leamon J.H., Lefkowitz S.M., Lei M., Li J., Lohman K.L., Lu H., Makhijani V.B., McDade K.E., McKenna M.P., Myers E.W., Nickerson E., Nobile J.R., Plant R., Puc B.P., Ronan M.T., Roth G.T., Sarkis G.J., Simons J.F., Simpson J.W., Srinivasan M., Tartaro K.R., Tomasz A., Vogt K.A., Volkmer G.A., Wang S.H., Wang Y., Weiner M.P., Yu P., Begley R.F. & Rothberg J.M. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376–380.

    PubMed  CAS  Google Scholar 

  • McCutcheon J.P. & Moran N.A. 2007. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc. Natl. Acad. Sci. USA 104: 19392–19397.

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen T.S., Ku M., Jaffe D.B., Issac B., Lieberman E., Giannoukos G., Alvarez P., Brockman W., Kim T.K., Koche R.P., Lee W., Mendenhall E., O’Donovan A., Presser A., Russ C., Xie X., Meissner A., Wernig M., Jaenisch R., Nusbaum C., Lander E.S. & Bernstein B.E. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448: 553–560.

    Article  PubMed  CAS  Google Scholar 

  • Moore M.J., Dhingra A., Soltis P.S., Shaw R., Farmerie W.G., Folta K.M. & Soltis D.E. 2006. Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol 6: 17.

    Article  PubMed  Google Scholar 

  • Ng P., Tan J.J.S., Ooi H.S., Lee Y.L., Chiu K.P., Fullwood M.J., Srinivasan K.G., Perbost C., Du L. & Sung W.K. 2006. Multiplex sequencing of paired-end ditags (MS-PET): a strategy for the ultra-high-throughput analysis of transcriptomes and genomes. Nucleic Acids Res. 34: e84.

    Article  PubMed  Google Scholar 

  • Olson M. 2007. Enrichment of super-sized resequencing targets from the human genome. Nat. Methods 4: 891–892.

    Article  PubMed  CAS  Google Scholar 

  • Peng H., Zhang J. & Wu X.J. 2008. The ploidy effects in plant gene expression: progress, problems and prospects. Sci. China Ser. C Life Sciences 51: 295–301.

    Article  CAS  Google Scholar 

  • Porreca G.J., Zhang K., Li J.B., Xie B., Austin D., Vassallo S.L., LeProust E.M., Peck B.J., Emig C.J., Dahl F., Gao Y., Church G.M. & Shendure J. 2007. Multiplex amplification of large sets of human exons. Nat. Methods 4: 931–936.

    Article  PubMed  CAS  Google Scholar 

  • Robertson G., Hirst M., Bainbridge M., Bilenky M., Zhao Y., Zeng T., Euskirchen G., Bernier B., Varhol R. & Delaney A. 2007. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4: 651–657.

    Article  PubMed  CAS  Google Scholar 

  • Romeo S., Pennacchio L.A., Fu Y., Boerwinkle E., Tybjaerg-Hansen A., Hobbs H.H. & Cohen J.C. 2007. Population-based resequencing of ANGPTL4 uncovers variations that reduce triglycerides and increase HDL. Nat. Genet. 39: 513–516.

    Article  PubMed  CAS  Google Scholar 

  • Rubin A.F. & Green P. 2007. Comment on “The consensus coding sequences of human breast and colorectal cancers”. Science 317: 1500.

    Article  PubMed  CAS  Google Scholar 

  • Ryan D., Rahimi M., Lund J., Mehta R. & Parviz B.A. 2007. Toward nanoscale genome sequencing. Trends Biotechnol. 25: 385–389.

    Article  PubMed  CAS  Google Scholar 

  • Schones D.E., Cui K., Cuddapah S., Roh T.Y., Barski A., Wang Z., Wei G. & Zhao K. 2008. Dynamic regulation of nucleosome positioning in the human genome. Cell 132: 887–898.

    Article  PubMed  CAS  Google Scholar 

  • Service R.F. 2006. Gene sequencing. The race for the $1000 genome. Science 311: 1544–1546.

    Article  PubMed  CAS  Google Scholar 

  • Shendure J., Porreca G.J., Reppas N.B., Lin X., McCutcheon J.P., Rosenbaum A.M., Wang M.D., Zhang K., Mitra R.D. & Church G.M. 2005. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309: 1728–1732.

    Article  PubMed  CAS  Google Scholar 

  • Sjoblom T., Jones S., Wood L.D., Parsons D.W., Lin J., Barber T.D., Mandelker D., Leary R.J., Ptak J., Silliman N., Szabo S., Buckhaults P., Farrell C., Meeh P., Markowitz S.D., Willis J., Dawson D., Willson J.K., Gazdar A.F., Hartigan J., Wu L., Liu C., Parmigiani G., Park B.H., Bachman K.E., Papadopoulos N., Vogelstein B., Kinzler K.W. & Velculescu V.E. 2006. The consensus coding sequences of human breast and colorectal cancers. Science 314: 268–274.

    Article  PubMed  Google Scholar 

  • Sogin M.L., Morrison H.G., Huber J.A., Mark Welch D., Huse S.M., Neal P.R., Arrieta J.M. & Herndl G.J. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA 103: 12115–12120.

    Article  PubMed  CAS  Google Scholar 

  • Storm A.J., Chen J.H., Zandbergen H.W. & Dekker C. 2005a. Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E. Stat. Nonlin. Soft Matter. Phys. 71: 051903.

  • Storm A.J., Storm C., Chen J., Zandbergen H., Joanny J.F. & Dekker C. 2005b. Fast DNA translocation through a solid-state nanopore. Nano. Lett. 5: 1193–1197.

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia M., Pennacchio L.A., Zhao C., Yadav K.K., Fodale V., Sarkozy A., Pandit B., Oishi K., Martinelli S., Schackwitz W., Ustaszewska A., Martin J., Bristow J., Carta C., Lepri F., Neri C., Vasta I., Gibson K., Curry C.J., Siguero J.P., Digilio M.C., Zampino G., Dallapiccola B., Bar-Sagi D. & Gelb B.D. 2007. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat. Genet. 39: 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Velicer G.J., Raddatz G., Keller H., Deiss S., Lanz C., Dinkelacker I. & Schuster S.C. 2006. Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor. Proc. Natl. Acad. Sci. USA 103: 8107–8112.

    Article  PubMed  CAS  Google Scholar 

  • Wold B. & Myers R.M. 2008. Sequence census methods for functional genomics. Nat. Methods 5: 19–21.

    Article  PubMed  CAS  Google Scholar 

  • Zhang X.Y., Yazaki J., Sundaresan A., Cokus S., Chan S.W., Chen H., Henderson I.R., Shinn P., Pellegrini M., Jacobsen S.E. & Ecker J.R. 2006. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126: 1189–1201.

    Article  PubMed  CAS  Google Scholar 

  • Zilberman D., Gehring M., Tran R.K., Ballinger T. & Henikoff S. 2007. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat. Genet 39: 61–69.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, H., Zhang, J. Commercial high-throughput sequencing and its applications in DNA analysis. Biologia 64, 20–26 (2009). https://doi.org/10.2478/s11756-009-0028-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0028-4

Key words