Skip to main content
Log in

Quantitative analysis of time-series fluorescence microscopy using a spot tracking method: application to Min protein dynamics

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The dynamics of MinD protein has been recognized as playing an important role in the accurate positioning of the septum during cell division. In this work, spot tracking technique (STT) was applied to track the motion and quantitatively characterize the dynamic behavior of green fluorescent protein-labeled MinD (GFP-MinD) in an Escherichia coli system. We investigated MinD dynamics on the level of particle ensemble or cluster focusing on the position and motion of the maximum in the spatial distribution of MinD proteins. The main results are twofold: (i) a demonstration of how STT could be an acceptable tool for MinD dynamics studies; and (ii) quantitative findings with parametric and non-parametric analyses. Specifically, experimental data monitored from the dividing E. coli cells (typically 4.98 ± 0.75 µm in length) has demonstrated a fast oscillation of the MinD protein between the two poles, with an average period of 54.6 ± 8.6 s. Observations of the oscillating trajectory and velocity show a trapping or localized behavior of MinD around the polar zone, with average localization velocity of 0.29 ± 0.06 µm/s; and flight switching was observed at the pole-to-pole leading edge, with an average switching velocity of 2.95 ± 0.31 µm/s. Subdiffusive motion of MinD proteins at the polar zone was found and investigated with the dynamic exponent, α of 0.34 ± 0.16. To compare with the Gaussian-based analysis, non-parametric statistical analysis and noise consideration were also performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GFP-MinD:

green fluorescent protein-labeled MinD protein

MTS:

membrane-targeting sequence

MSD:

mean squared displacement

PSD:

power spectrum density

ROI:

region of interest

SPT:

single particle tracking

STT:

spot tracking technique

Z-ring:

equatorial ring

References

  • Babcock H.P., Chen C. & Zhuang X. 2004. Using single-particle tracking to study nuclear trafficking of viral genes. Biophys. J. 87: 2749–2758.

    Article  PubMed  CAS  Google Scholar 

  • de Boer P.A.J., Crossley R.E., Hand A.R. & Rothfield L.I. 1991. The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J. 10: 4371–4380.

    PubMed  Google Scholar 

  • de Boer P.A.J., Crossley R.E. & Rothfield L.I. 1989. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56: 641–649.

    Article  PubMed  Google Scholar 

  • Drew D.A., Osborn M.J. & Rothfield L.I. 2005. A polymerization-depolymerization model that accurately generates the self-sustained oscillatory system involved in bacterial division site placement. Proc. Natl. Acad. Sci. USA 102: 6114–6118.

    Article  PubMed  CAS  Google Scholar 

  • Fange D. & Elf J. 2006. Noise-induced Min phenotypes in E. coli. PLoS Comput. Biol. 2: e80.

    Article  PubMed  Google Scholar 

  • Fish A., Akselrod D. & Yadid-Pech O. 2004. High precision image centroid computation via an adaptive k-winner-take-all circuit in conjunction with a dynamic element matching algorithm for star tracking applications. Analog Integrated Circuits and Signal Processing 39: 251–266.

    Article  Google Scholar 

  • Fuentes M.A. & Cáceres M.O. 2008. Computing the non-linear anomalous diffusion equation from first principles. Physics Lett. A 372: 1236–1239.

    Article  CAS  Google Scholar 

  • Golding I. & Cox E. C. Physical nature of bacterial cytoplasm. 2006. Phys. Rev. Lett. 96: 098102.

  • Hale C.A., Meinhardt H. & de Boer P.A. 2001. Dynamics localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J. 20: 1563–1572.

    Article  PubMed  CAS  Google Scholar 

  • Havlin S. & ben-Avraham D. 2002. Diffusion in disordered media. Advan. Phys. 51: 187–292.

    Article  CAS  Google Scholar 

  • Howard M., Rutenberg A.D. & de Vet S. 2001. Dynamics compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87: 278102.

    Google Scholar 

  • Howard M. & Rutenberg A.D. 2003. Pattern formation inside bacteria: fluctuations due to the low copy number of proteins. Phys. Rev. Lett. 90: 128102.

    Google Scholar 

  • Hu Z., Gogol E.P. & Lutkenhaus J. 2002. Dynamics assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc. Natl Acad. Sci. USA 99: 6761–6766.

    Article  PubMed  CAS  Google Scholar 

  • Hu Z. & Lutkenhaus J. 1999. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol. Microbiol. 34: 82–90.

    Article  PubMed  CAS  Google Scholar 

  • Hu Z. & Lutkenhaus J. 2001. Topological regulation of cell division in E. coli: spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol. Cell 7: 1337–1343.

    Article  PubMed  CAS  Google Scholar 

  • Hu Z. & Lutkenhaus J. 2003. A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum. Mol. Microbiol. 47: 345–355.

    Article  PubMed  CAS  Google Scholar 

  • Huang K.C., Meir Y. & Wingreen N.S. 2003. Dynamic structures in Escherichia coli: spontaneous formation of MinE rings and MinD polar zones. Proc. Natl. Acad. Sci. USA 100: 12724–12728.

    Article  PubMed  CAS  Google Scholar 

  • Justice S.S., Garcia-Lara J. & Rothfield L.I. 2000. Cell division inhibitors SulA and MinC/MinD block septum formation at different steps in the assembly of the Escherichia coli division machinery. Mol. Microbiol. 37: 410–423.

    Article  PubMed  CAS  Google Scholar 

  • Kerr R.A., Levine H., Sejnowski T.J. & Rappel W.J. 2006. Division accuracy in a stochastic model of Min oscillations in Escherichia coli. Proc. Natl. Acad. Sci. USA 103: 347–352.

    Article  PubMed  CAS  Google Scholar 

  • Kim S.Y., Gitai Z., Kinkhabwala A., Shapiro L. & Moerner W.E. 2006. Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 103: 10929–10934.

    Article  PubMed  CAS  Google Scholar 

  • Kruse K. 2002. A dynamic model for determining the middle of Escherichia coli. Biophys. J. 82: 618–627.

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni R.V., Huang K.C., Kloster M. & Wingreen N.S. 2004. Pattern formation within Escherichia coli: diffusion, membrane attachment, and self-interaction of MinD molecules. Phys. Rev. Lett. 93: 228103.

    Google Scholar 

  • Lutkenhaus J. 2007. Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu. Rev. Biochem. 76: 539–562.

    Article  PubMed  CAS  Google Scholar 

  • Lutkenhaus J. & Addinall S.G. 1997. Bacterial cell division and the Z ring. Annu. Rev. Biochem. 66: 93–116.

    Article  PubMed  CAS  Google Scholar 

  • Mantegna R.N. & Stanley H.E. 2000. An Introduction to Econophysics Correlations and Complexity in Finance. Cambridge University Press, Cambridge, England, 144 pp.

    Google Scholar 

  • Meacci G. & Kruse K. 2005. Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins. Phys. Biol. 2: 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt H. & de Boer P.A. 2001. Pattern formation in Escherichia coli: a model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc. Natl. Acad. Sci. USA 98: 14202–14207.

    Article  PubMed  CAS  Google Scholar 

  • Metzler R. & Klafter J. 2000. The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339: 1–77

    Article  CAS  Google Scholar 

  • Modchang C., Kanthang P., Triampo W., Ngamsaad W., Nuttawut N. & Tang I.M. 2005. Modeling of the dynamics poleto-pole oscillations of the Min proteins in bacterial cell division: the effect of an external field. J. Korean Phys. Soc. 46: 1031–1036.

    CAS  Google Scholar 

  • Pavin N., Paljetak H.C. & Krstić V. 2006. Min-protein oscillations in Escherichia coli with spontaneous formation of two-stranded filaments in a three-dimensional stochastic reaction-diffusion model. Phys. Rev. E 73: 021904.

    Google Scholar 

  • Qian H., Scheetz M. & Elson E.L. 1991. Single particle tracking. Biophys. J. 60: 910–921.

    Article  PubMed  CAS  Google Scholar 

  • Raskin D.M. & de Boer P.A. 1999a. MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli. J. Bacteriol. 181: 6419–6424.

    PubMed  CAS  Google Scholar 

  • Raskin D.M. & de Boer P.A. 1999b. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc. Natl. Acad. Sci. USA 96: 4971–4976.

    Article  PubMed  CAS  Google Scholar 

  • RayChaudhuri D., Gordon G.S. & Wright A. 2000. How does a bacterium find its middle? Nat. Struct. Biol. 7: 997–999.

    Article  PubMed  CAS  Google Scholar 

  • Rothfield L., Justice S. & Garcia-Lara J. 1999. Bacterial cell division. Annu. Rev. Genet. 33: 423–448.

    Article  PubMed  CAS  Google Scholar 

  • Rothfield L.I., Shih Y.L. & King G. 2001. Polar explorers: membrane proteins that determine division site placement. Cell 106: 13–16.

    Article  PubMed  CAS  Google Scholar 

  • Rothfield L., Taghbalout A. & Shih Y.L. 2005. Spatial control of bacterial division-site placement. Nat. Rev. Microbiol. 31: 959–968.

    Article  Google Scholar 

  • Rowland S.L., Fu X., Sayed M.A., Zhang Y., Cook W.R. & Roth-field L. 2000. Membrane redistribution of the Escherichia coli MinD protein induced by MinE. J. Bacteriol 182: 613–619.

    Article  PubMed  CAS  Google Scholar 

  • Sage D., Neumann F.R., Hediger F., Gasser S.M. & Unser M. 2005. Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics. IEEE Trans. Image Process. 14: 1372–1383.

    Article  PubMed  Google Scholar 

  • Saxton M.J. 1996. Anomalous diffusion due to binding: a Monte Carlo study. Biophys. J. 70: 1250–1262.

    Article  PubMed  CAS  Google Scholar 

  • Saxton M.J. & Jacobson K. 1997. Single-particle tracking: applications to membrane dynamics. Annu Rev. Biophys. Biomol. Struct. 26: 373–399.

    Article  PubMed  CAS  Google Scholar 

  • Shih Y.L., Le T. & Rothfield L. 2003. Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc. Natl Acad. Sci. USA 100: 7865–7870.

    Article  PubMed  CAS  Google Scholar 

  • Suefuji K., Valluzzi R. & RayChaudhuri D. 2002. Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE. Proc. Natl Acad. Sci. USA 99: 16776–16781.

    Article  PubMed  CAS  Google Scholar 

  • Szeto J., Eng N.F., Acharya S., Rigden M.D. & Dillon J.A. 2005. A conserved polar region in the cell division site determinant MinD is required for responding to MinE-induced oscillation but not for localization within coiled arrays. Res. Microbiol. 156: 17–29.

    Article  PubMed  CAS  Google Scholar 

  • Szeto T.H., Rowland S.L., Rothfield L.I. & King G.F. 2002. Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts. Proc. Natl Acad. Sci. USA 99: 15693–15698.

    Article  PubMed  CAS  Google Scholar 

  • Taghbalout A., Ma L. & Rothfield L. 2006. Role of MinD-membrane association in Min protein interactions. J. Bacteriol. 188: 2993–3001.

    Article  PubMed  CAS  Google Scholar 

  • Thurner S., Wick N., Hanele R., Sedivy R. & Huber L. 2003. Anomalous diffusion on dynamical networks: a model for interacting epithelial cell migration. Physica A 320: 475–484.

    Article  Google Scholar 

  • Tolic-Nørrelykke I.M., Munteanu E.L. & Thon G. 2004. Anomalous diffusion in living yeast cells. Phys. Rev. Lett. 93: 078102.

    Google Scholar 

  • Tostevin F. & Howard M. 2006. A stochastic model of Min oscillations in Escherichia coli and Min protein segregation during cell division. Phys. Biol. 3: 1–12.

    Article  CAS  Google Scholar 

  • Touhami A., Jericho M. & Rutenberg A.D. 2006. Temperature dependence of MinD oscillation in Escherichia coli: running hot and fast. J. Bacteriol. 188: 7661–7667.

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya A., Rieub J.P., Glaziera J.A. & Sawada Y. 2001. Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates. Physica A 293: 549–558.

    Article  Google Scholar 

  • Woldringh C.L., Mulder E., Huls P.G. & Vischer N. 1991. Toporegulation of bacterial division according to the nucleoid occlusion model. Res. Microbiol. 142: 309–320.

    Article  PubMed  CAS  Google Scholar 

  • Wong I.Y., Gardel M.L., Reichman D.R., Weeks E.R., Valentine M.T., Bausch A. R. & Weitz D.A. 2004. Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. Phys. Rev. Lett. 92: 178101.

    Google Scholar 

  • Yu X.C. & Margolin W. 1999. FtsZ ring clusters in Min and partition mutants: role of both the Min system and the nucleoid in regulating FtsZ ring localization. Mol. Microbiol. 32: 315–326.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wannapong Triampo.

Additional information

Co-first authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unai, S., Kanthang, P., Junthon, U. et al. Quantitative analysis of time-series fluorescence microscopy using a spot tracking method: application to Min protein dynamics. Biologia 64, 27–42 (2009). https://doi.org/10.2478/s11756-009-0013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-009-0013-y

Key words

Navigation