Skip to main content
Log in

An investigation on acarbose inhibition and the number of active sites in an amylopullulanase (L14-APU) from an Iranian Bacillus sp.

  • Full Paper
  • Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

An amylopullulanase (L14-APU) from an Iranian thermophilic bacterium was purified and the effect of acarbose, as a general inhibitor of α-amylases, on pullulan and starch hydrolysis catalyzed by L14-APU was investigated. The inhibition is a competitive type whereas inhibition constants for pullulan and starch are 99 µM and 72 µM, respectively. Investigation of the reaction rate in a system contains competitive substrates and the inhibition type of acarbose in presence of different substrates suggests that L14-APU possesses only one active site for two activities. The analysis of metal ions and other reagents effects has shown that Ca2+, Mg2+, Mn2+ and Co2+ enhanced both activities of the enzyme while N-bromosuccinimide treatment leads to the complete inactivation of the enzyme. The enzyme activity increased in the presence of low concentration of SDS as a surfactant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

cyclodextrin

EPS:

ethylidene-blocked 4-nitrophenyl-maltoheptaoside

GH:

glycoside hydrolase

HPA:

human pancreatic α-amylase

L14-APU:

L14 amylopullulanase

NBS:

N-bromosuccinimide

PPA:

pig pancreatic α-amylase

References

  • Bertoldo C., Duffner F., Jorgensen P.L. & Antranikian G. 1999. Pullulanase type I from Fervidobacterium pennavorans Ven5: cloning, sequencing, and expression of the gene and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 65: 2084–2091.

    PubMed  CAS  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Brown S.H. & Kelly R.M. 1993. Characterization of amylolytic enzymes, having both α-1,4 and α-1,6 hydrolytic activity, from the thermophilic Archaea Pyrococcus furiosus and Thermococcus litoralis. Appl. Environ. Microbiol. 59: 2614–2621.

    PubMed  CAS  Google Scholar 

  • Canganella F., Andrade C.M. & Antranikian G. 1994. Characterization of amylolytic and pullulytic enzymes from thermophilic archaea and from a new Fervidobacterium species. Appl. Microbiol. Biotechnol. 42: 239–245.

    CAS  Google Scholar 

  • Chang-Pi-Hin F., Erra-Pujada M., Dauchez M., Debeire P., Duchiron F. & O’Donohue M.J. 2002. Expression and characterization of the catalytic domain of an archaeal family 57 pullulanase type II. Biologia 57(Suppl. 1): 155–162.

    CAS  Google Scholar 

  • Desseaux V., Koukiekolo R., Moreau Y., Santimone M. & Marchis-Mouren G. 2002. Mechanism of porcine pancreatic α-amylase: inhibition of amylose and maltopentaose hydrolysis by various inhibitors. Biologia 57(Suppl. 11): 163–170.

    CAS  Google Scholar 

  • Doman-Pytka M. & Bardowski J. 2004. Pullulan degrading enzymes of bacterial origin. Crit. Rev. Microbiol. 30: 107–121.

    Article  PubMed  CAS  Google Scholar 

  • Dong G., Vieille C. & Zeikus J.G. 1997. Cloning, sequencing, and expression of the gene encoding amylopullulanase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 63: 3577–3584.

    PubMed  CAS  Google Scholar 

  • Duffner F., Bertoldo C., Andersen J.T., Wagner K. & Antranikian G. 2000. A new thermoactive pullulanase from Desulfurococcus mucosus: cloning, sequencing, purification, and characterization of the recombinant enzyme after expression in Bacillus subtilis. J. Bacteriol. 182: 6331–6338.

    Article  PubMed  CAS  Google Scholar 

  • Erra-Pujada M., Debeire P., Duchiron F. & O’Donohue M.J. 1999. The type II pullulanase of Thermococcus hydrothermalis: molecular characterization of the gene and expression of the catalytic domain. J. Bacteriol. 181: 3284–3287.

    PubMed  CAS  Google Scholar 

  • Franco O.L., Rigden D.J., Melo F.R. & Grossi-de-sa M.F. 2002. Plant α-amylase inhibitors and their interaction with insect α-amylases: structure, function and potential for crop protection. Eur. J. Biochem. 269: 397–412.

    Article  PubMed  CAS  Google Scholar 

  • Gantelet H., Ladrat C., Godfroy A., Barbier G. & Duchiron F. 1998. Characteristics of pullulanases from extremely thermophilic archaea isolated from deep-sea hydrothermal vents. Biotechnol. Lett. 20: 819–823.

    Article  CAS  Google Scholar 

  • Gasperik J., Hostinova E. & Sevcik J. 2005. Acarbose binding at the surface of Saccharomycopsis fibuligera glucoamylase suggests the presence of a raw starch-binding site. Biologia 60(Suppl. 16): 167–170.

    CAS  Google Scholar 

  • Hatada Y., Igarashi K., Ozaki K., Ara K., Hitomi J., Kobayashi T., Kawai S., Watabe T. & Ito S. 1996. Amino acid sequence and molecular structure of an alkaline amylopullulanase from Bacillus that hydrolyzes α-1,4 and α-1,6 linkages in polysaccharides at different active sites. J. Biol. Chem. 271: 24075–24083.

    Article  PubMed  CAS  Google Scholar 

  • Janecek S. 2005. Amylolytic families of glycoside hydrolases: focus on the family GH-57. Biologia 60(Suppl. 16): 177–184.

    CAS  Google Scholar 

  • Kagawa M., Fujimoto Z., Momma M., Takase K., & Mizuno H. 2003. Crystal structure of Bacillus subtilis α-amylase in complex with acarbose. J. Bacteriol. 185: 6981–6984.

    Article  PubMed  CAS  Google Scholar 

  • Kimura T. & Horikoshi K. 1990. Characterization of pullulan-hydrolysing enzyme from an alkalopsychrotrophic Micrococcus sp. Appl. Microbiol. Biotechnol. 34: 52–56.

    Article  CAS  Google Scholar 

  • Koukiekolo R., Desseaux V.R., Moreau Y., Marchis-Mouren G. & Santimone M. 2001. Mechanism of porcine pancreatic α-amylase inhibition of amylose and maltopentaose hydrolysis by α-, β- and γ-cyclodextrins. Eur. J. Biochem. 268: 841–848.

    Article  PubMed  CAS  Google Scholar 

  • Kriegshäuser G. & Liebl W. 2000. Pullulanse from the hyperthermophilic bacterium Thermotoga maritima: purification by β-cyclodextrin affinity chromatography. J. Chromatogr. B737: 245–251.

    Google Scholar 

  • Kruse-Jarres J.D., Kaiser C., Hafkenscheid J.C., Hohenwallner W., Stein W., Bohner J., Klein G., Poppe W. & Rauscher E. 1989. Evaluation of a new α-amylase assay using 4.6-ethylidene-(G7)-1-4-nitrophenyl-(G1)-α-D-maltoheptaoside as substrate. J. Clin. Chem. Clin. Biochem. 27: 103–113.

    PubMed  CAS  Google Scholar 

  • Leemhuis H., Dijkstra B.W. & Dijkhuizen L. 2003. Thermoanaerobacterium thermosulfurigenes cyclodextrin glycosyltransferase. Mechanism and kinetics of inhibition by acarbose and cyclodextrins. Eur. J. Biochem. 270: 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Leveque E., Janecek S., Haye B. & Belarbi A. 2000. Thermophilic archaeal amylolytic enzymes. Enzyme Microb. Technol. 26: 3–14.

    Article  CAS  Google Scholar 

  • Matzke J., Herrmann A., Schneider E. & Bakker E.P. 2000. Gene cloning, nucleotide sequence and biochemical properties of a cytoplasmic cyclomaltodextrinase (neopullulanase) from Alicyclobacillus acidocaldarius, reclassification of a group of enzymes. FEMS Microbiol. Lett. 183: 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Mathupala S.P., Lowe S.E., Podkovyrov S.M. & Zeikus J.G. 1993. Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis. J. Biol. Chem. 268: 16332–16344.

    PubMed  CAS  Google Scholar 

  • Melasniemi H. 1988. Purification and some properties of the extracellular α-amylase-pullulanase produced by Clostridium thermohydrosulfuricum. Biochem. J. 250: 813–818.

    PubMed  CAS  Google Scholar 

  • Miller G.L. 1959. Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  • Nahoum V., Roux G., Anton V., Rouge P., Puigserver A., Bischoff H., Henrissat B. & Payan F. 2000. Crystal structures of human pancreatic α-amylase in complex with carbohydrate and proteinaceous inhibitors. Biochem J. 346: 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura N., Sashihara N., Nagayama H. & Horikoshi K. 1989. Characterization of pullulanase and α-amylase activities of a Thermus sp. AMD33. Starch 41: 112–117.

    Article  Google Scholar 

  • Oudjeriouat N., Moreau Y., Santimone M., Svensson B., Marchis-Mouren G. & Desseaux V. 2003. On the mechanism of α-amylase acarbose and cyclodextrin inhibition of barley amylase isozymes. Eur. J. Biochem. 270: 3871–3879.

    Article  PubMed  CAS  Google Scholar 

  • Rudiger A., Jorgensen P.L. & Antranikian G. 1995. Isolation and characterization of a heat-stable pullulanase from the hyperthermophilic archaeon Pyrococcus woesei after cloning and expression of its gene in Escherichia coli. Appl. Environ. Microbiol. 61: 567–575.

    PubMed  CAS  Google Scholar 

  • Saha B.C., Lamed R., Lee C.Y., Mathupala S.P. & Zeikus J.G. 1990. Characterization of an endo-acting amylopullulanase from Thermoanaerobacter strain B6A. Appl. Environ. Microbiol. 56: 881–886.

    PubMed  CAS  Google Scholar 

  • Saha B.C., Mathupala S.P. & Zeikus J.G. 1988. Purification and characterization of a highly thermostable novel pullulanase from Clostridium thermohydrosulfuricum. Biochem J. 252: 343–348.

    PubMed  CAS  Google Scholar 

  • Sata H., Umeda M., Kim C.H., Taniguchi H. & Maruyama Y. 1989. Amylase-pullulanase enzyme produced by B. circulans F-2. Biochim. Biophys. Acta 991: 388–394.

    CAS  Google Scholar 

  • Schwerdtfeger R.M., Chiaraluce R., Consalvi V., Scandurra R. & Antranikian G. 1999. Stability, refolding and Ca2+ binding of pullulanase from the hyperthermophilic archaeon Pyrococcus woesei. FEBS J. 264: 479–487.

    CAS  Google Scholar 

  • Tang S.Y., Yang S. J., Cha H., Woo E.J., Park C. & Park K. H. 2006. Contribution of W229 to the transglycosylation activity of 4-α-glucanotransferase from Pyrococcus furiosus. Biochim. Biophys. Acta. 1764: 1633–1638.

    PubMed  CAS  Google Scholar 

  • Vieille C. & Zeikus J.G. 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1–43.

    Article  PubMed  CAS  Google Scholar 

  • Zareian S., Khajeh K., Ghollasi M., Mollania N. & Ranjbar B. 2008. Purification and characterization of a novel amylopullulanase that converts pullulan to glucose, maltose, and maltotriose and starch to glucose and maltose. Enzyme Microb. Technol. (submitted article).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khosro Khajeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghollasi, M., Khajeh, K., Mollania, N. et al. An investigation on acarbose inhibition and the number of active sites in an amylopullulanase (L14-APU) from an Iranian Bacillus sp.. Biologia 63, 1051–1056 (2008). https://doi.org/10.2478/s11756-008-0174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0174-0

Key words

Navigation