Skip to main content
Log in

Role of the phenylalanine 260 residue in defining product profile and alcoholytic activity of the α-amylase AmyA from Thermotoga maritima

  • Full Paper
  • Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Some α-amylases besides catalyzing the hydrolysis of α-1,4 glycosidic bonds in starch are also capable of carrying out some transglycosylation activity. The importance of aromatic residues near the catalytic site in determining the ratio of these two competing activities has been remarked in the past. In the present work we investigated the role of residue 260 in the product profile of the α-amylase AmyA from Thermotoga maritima. This phenylalanine residue, two positions after the glutamic acid/base catalyst was substituted by both tryptophan and glycine residues, showing opposite behaviors. The tryptophan mutant displayed a very similar product profile pattern to that of the wild-type enzyme; while the mutant Phe260Gly showed a higher transglycosylation/hydrolysis ratio. When the Phe260Trp mutation was constructed in the context of His222Gln, a mutant we have already reported with an increased transglycosylation/hydrolysis ratio and a higher alcoholysis activity, the resultant enzyme showed an apparent higher hydrolysis/transglycosylation ratio and a change to shorter products pattern than the single mutant enzyme, still maintaining the increased alcoholytic activity provided by the His222Gln mutation. The mutant Phe260Gly, on the other hand showed by itself a higher alcoholytic activity, similar to that of the His222Gln mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AmyA:

α-amylase from Thermotoga maritima

CGTase:

cyclodextrin glucanotransferase

G1–G7:

oligosaccharides from G1 (glucose) through G7 (maltoheptaose)

GH:

glycoside hydrolase

HPLC:

high performance liquid chromatography

TLC:

thin layer chromatography

References

  • Allen J.D. & Thoma J.A. 1976. Subsite mapping of enzymes. Application of the depolymerase computer model to two α-amylases. Biochem. J. 159: 121–132.

    PubMed  CAS  Google Scholar 

  • Brzozowski A.M. & Davies G.J. 1997. Structure of the Aspergillus oryzae α-amylase complexed with the inhibitor acarbose at 2.0 Å resolution. Biochemistry 36: 10837–10845.

    Article  PubMed  CAS  Google Scholar 

  • Brzozowski A.M., Lawson D.M., Turkenburg J.P., Bisgaard-Frantzen H., Svendsen A., Borchert T.V., Dauter Z., Wilson K.S. & Davies G.J. 2000. Structural analysis of a chimeric bacterial α-amylase. High-resolution analysis of native and ligand complexes. Biochemistry 39: 9099–9107.

    Article  PubMed  CAS  Google Scholar 

  • Crabb D.W. & Mitchinson C. 1997. Enzymes involved in the processing of starch to sugars. Trends Biotechnol. 15: 349–352.

    Article  CAS  Google Scholar 

  • Damian-Almazo J.Y., Moreno A., Lopez-Munguia A., Sobreron X., Gonzalez-Munoz F. & Saab-Rincon G. 2008. Enhancement of the alcoholytic activity of α-amylase AmyA from Thermotoga maritima MSB8 (DSM 3109) by site directed mutagenesis. Appl. Environ. Microbiol. 74: 5168–5177.

    Article  PubMed  CAS  Google Scholar 

  • del-Rio G., Morett E. & Soberon X. 1997. Did cyclodextrin glycosyltransferases evolve from α-amylases? FEBS Lett. 416: 221–224.

    Article  PubMed  CAS  Google Scholar 

  • Fogarty W.M. 1983. Microbial amylases, pp. 1–92. In: Fogarty W.M. (ed.), Microbial Enzymes and Biotechnology, Applied Science Publishers Ltd., New York.

    Google Scholar 

  • Friedberg F. 1983. On the primary structure of amylases. FEBS Lett. 152: 139–140.

    Article  PubMed  CAS  Google Scholar 

  • Janecek S., MacGregor E.A. & Svensson B. 1995. Characteristic differences in the primary structure allow discrimination of cyclodextrin glucanotransferases from α-amylases. Biochem. J. 305: 685–686.

    PubMed  CAS  Google Scholar 

  • Janecek S., Svensson B. & Henrissat B. 1997. Domain evolution in the α-amylase family. J. Mol. Evol. 45: 322–331.

    Article  PubMed  CAS  Google Scholar 

  • Jespersen H.M., MacGregor E.A., Henrissat B., Sierks M.R. & Svensson B. 1993. Starch-and glycogen-debranching and branching enzymes: prediction of structural features of the catalytic (β/α)s-barrel domain and evolutionary relationship to other amylolytic enzymes. J. Prot. Chem. 12: 791–805.

    Article  CAS  Google Scholar 

  • Jorgensen S., Vorgias C.E. & Antranikian G. 1997. Cloning, sequencing, characterization, and expression of an extracellular α-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J. Biol. Chem. 272: 16335–16342.

    Article  PubMed  CAS  Google Scholar 

  • Kim T.J., Kim M.J., Kim B.C., Kim J.C., Cheong T.K., Kim J.W. & Park K.H. 1999. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl. Environ. Microbiol. 65: 1644–1651.

    PubMed  CAS  Google Scholar 

  • Kim T.J., Park C.S., Cho H.Y., Cha S.S., Kim J.S., Lee S.B., Moon T.W., Kim J.W., Oh B.H. & Park K.H. 2000. Role of the glutamate 332 residue in the transglycosylation activity of Thermus maltogenic amylase. Biochemistry 39: 6773–6780.

    Article  PubMed  CAS  Google Scholar 

  • Kondo H., Nakatani H., Matsuno R. & Hiromi K. 1980. Product distribution in amylase-catalyzed hydrolysis of amylose. Comparison of experimental results with theoretical predictions. J. Biochem. 87: 1053–1070.

    PubMed  CAS  Google Scholar 

  • Kuriki T., Kaneko H., Yanase M., Takata H., Shimada J., Handa S., Takada T., Umeyama H. & Okada S. 1996. Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center. J. Biol. Chem. 271: 17321–17329.

    Article  PubMed  CAS  Google Scholar 

  • Liebl W., Stemplinger I. & Ruile P. 1997. Properties and gene structure of the Thermotoga maritima α-amylase AmyA, a putative lipoprotein of a hyperthermophilic bacterium. J. Bacteriol. 179: 941–948.

    PubMed  CAS  Google Scholar 

  • Lim W.J., Park S.R., An C.L., Lee J.Y., Hong S.Y., Shin E.C., Kim E.J., Kim J.O., Kim H. & Yun H.D. 2003. Cloning and characterization of a thermostable intracellular α-amylase gene from the hyperthermophilic bacterium Thermotoga maritima MSB8. Res. Microbiol. 154: 681–687.

    Article  PubMed  CAS  Google Scholar 

  • Matsui I., Yoneda S., Ishikawa K., Miyairi S., Fukui S., Umeyama H. & Honda K. 1994. Roles of the aromatic residues conserved in the active center of Saccharomycopsis α-amylase for transglycosylation and hydrolysis activity. Biochemistry 33: 451–458.

    Article  PubMed  CAS  Google Scholar 

  • Mosi R., He S., Uitdehaag J., Dijkstra B.W. & Withers S.G. 1997. Trapping and characterization of the reaction intermediate in cyclodextrin glycosyltransferase by use of activated substrates and a mutant enzyme. Biochemistry 36: 9927–9934.

    Article  PubMed  CAS  Google Scholar 

  • Nakajima R., Imanaka T. & Aiba S. 1986. Comparison of amino acid sequences of eleven different α-amylases. Appl. Microbiol. Biotechnol. 23: 355–360.

    Article  CAS  Google Scholar 

  • Pujadas G. & Palau J. 2001. Evolution of α-amylases: architectural features and key residues in the stabilization of the (β/α)8 scaffold. Mol. Biol. Evol. 18: 38–54.

    PubMed  CAS  Google Scholar 

  • Rey M.W., Brown K.M., Golightly E.J., Fuglsang C.C., Nielsen B.R., Hendriksen H.V., Butterworth A. & Xu F. 2003. Cloning, heterologous expression, and characterization of Thielavia terrestris glucoamylase. Appl. Biochem. Biotechnol. 111: 153–166.

    Article  PubMed  CAS  Google Scholar 

  • Rivera M.H., Lopez-Munguia A., Soberon X. & Saab-Rincon G. 2003. α-Amylase from Bacillus licheniformis mutants near to the catalytic site: effects on hydrolytic and transglycosylation activity. Protein Eng. 16: 505–514.

    Article  PubMed  CAS  Google Scholar 

  • Robyt J.F. & French D. 1967. Multiple attach hypothesis of α-amylase action: action of porcine pancreatic, human salivary, and Aspergillus oryzae α-amylases. Arch. Biochem. Biophys. 122: 8–16.

    Article  PubMed  CAS  Google Scholar 

  • Rogers J.C. 1985. Conserved amino acid sequence domains in α-amylases from plants, mammals, and bacteria. Biochem. Biophys. Res. Comm. 128: 470–476.

    Article  PubMed  CAS  Google Scholar 

  • Saab-Rincon G., del-Rio G., Santamaria R.I., Lopez-Munguia A. & Soberon X. 1999. Introducing transglycosylation activity in a liquefying α-amylase. FEBS Lett. 453: 100–106.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar G. & Sommer S.S. 1990. The “megaprimer” method of site-directed mutagenesis. Biotechniques 8: 404–407.

    PubMed  CAS  Google Scholar 

  • Suganuma T., Ohnishi M., Hiromi K. & Nagahama T. 1996. Elucidation of the subsite structure of bacterial saccharifying α-amylase and its mode of degradation of maltose. Carbohydr. Res. 282: 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Svensson B. 1988. Regional distant sequence homology between amylases, α-glucosidases and transglucanosylases. FEBS Lett. 230: 72–76.

    Article  PubMed  CAS  Google Scholar 

  • Uitdehaag J.C.M., Mosi R., Kalk K.H., van der Veen B.A., Dijkhuizen L., Withers S.G. & Dijkstra B.W. 1999. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Nat. Struct. Biol. 6: 432–436.

    Article  PubMed  CAS  Google Scholar 

  • van der Maarel M.J., van der Veen B., Uitdehaag J.C., Leemhuis H. & Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94: 137–155.

    Article  PubMed  Google Scholar 

  • van der Veen B.A., Leemhuis H., Kralj S., Uitdehaag J.C.M., Dijkstra B.W. & Dijkhuizen L. 2001. Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextringlycosyltransferase. J. Biol. Chem. 276: 44557–44562.

    Article  PubMed  Google Scholar 

  • Vihinen M. & Mantsala P. 1989. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 24: 329–418.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Saab-Rincón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damián-Almazo, J.Y., López-Munguía, A., Soberón-Mainero, X. et al. Role of the phenylalanine 260 residue in defining product profile and alcoholytic activity of the α-amylase AmyA from Thermotoga maritima . Biologia 63, 1035–1043 (2008). https://doi.org/10.2478/s11756-008-0170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0170-4

Key words

Navigation