Skip to main content
Log in

Mechanisms involved in the biosynthesis of polysaccharides

  • Review
  • Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The mechanisms for the biosynthesis of three polysaccharides are presented: (i) starch synthesized by starch synthase and adenosine diphospho glucose; (ii) dextran synthesized by Leuconostoc mesenteroides B-512FMC dextransucrase and sucrose; and (iii) Acetobacter xylinum cellulose synthesized by cellulose synthase, uridine diphospho glucose, and bactoprenol phosphate. All three enzymes were pulsed with substrates, containing 14C-glucose and chased with the same nonlabeled substrates. When the polysaccharides were isolated, reduced, and hydrolyzed, the pulsed reactions gave 14C-glucitol, which was significantly decreased in the chase reaction. These experiments definitively show that all three polysaccharides are biosynthesized by the addition of glucose to the reducing-ends of the growing polysaccharides and not by the addition to the nonreducing-ends of primers. Additional evidence indicates that glucose and the polysaccharides are covalently attached to the active-sites of the enzymes. A two catalytic-site insertion mechanism at one active-site is proposed for the biosyntheses. Two of the polysaccharides are α-linked glucans, starch and dextran, and cellulose is a β-linked glucan, known for several years to require a bactoprenol lipid phosphate intermediate. It is shown how this intermediate is involved in determining that β-linkages are synthesized. Other β-linked polysaccharides: bacterial cell wall peptidomurein, Salmonella O-antigen polysaccharide, and Xanthanomonas camprestris xanthan, are heteropolysaccharides, with the later two also being hetero-linked polysaccharides, with the β-linkage at the reducing-end of the repeating unit. All three require bactoprenol lipid phosphate intermediates and are biosynthesized by the addition of the repeating units to the reducing-end of a growing polysaccharide chain, with the formation of a β-linkage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADPGlc:

adenosine diphospho glucose

CP:

conversion period, which is the theoretical time necessary to convert the substrate into product for the amount of enzyme present

d.p.:

degree of polymerization

α-Glc-1-P:

α-D-glucose-1-phosphate

Pi :

inorganic phosphate

UDPGlc:

uridine diphospho glucose

References

  • Ball S.G. & Morell M.K. 2003. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Ann. Rev. Plant Biol. 54: 207–233.

    Article  CAS  Google Scholar 

  • Ball S.G., Van de Wal H.B.J.M. & Visser R.G.F. 1998. Progress in understanding the biosynthesis of amylose. Trends Plant Sci. 3: 1360–1385.

    Article  Google Scholar 

  • Bocca S.N., Rothschild A. & Tandecarz J.S. 1997. Initiation of starch biosynthesis: purification and characterization of UDP-glucose: protein transglucosylation from potato tubers. Plant Physiol. Biochem. 35: 205–212.

    CAS  Google Scholar 

  • Bray D. & Robbins P.W. 1967. The direction of chain growth in Salmonella anatum O-antigen biosynthesis. Biochem. Biophys. Res. Commun. 28: 334–339.

    Article  PubMed  CAS  Google Scholar 

  • Colvin J.R. 1959. Synthesis of cellulose in ethanol extracts of Acetobacter xylinum. Nature 183: 1135–1137.

    Article  PubMed  CAS  Google Scholar 

  • Copper D. & St. John Manley R. 1975. Evidence for the involvement of a bactoprenol phosphate in bacterial cellulose biosynthesis. Biochim. Biophys. Acta 381: 78–96.

    Google Scholar 

  • Cori G.T. & Cori C.F. 1939. The activating effect of glycogen on the enzymic synthesis of glycogen from glucose-1-phosphate. J. Biol. Chem. 131: 397–398.

    CAS  Google Scholar 

  • Damager I., Denyer K., Motawia M.S., Møller B.L. & Blennow A. 2001. The action of starch synthase on 6IIIα-maltotriosyl-maltohexaose comprising the branch point of amylopectin. Eur. J. Biochem. 268: 4878–4884.

    Article  PubMed  CAS  Google Scholar 

  • Dankert M., Wright A., Kelley W.S. & Robbins P.W. 1966. Isolation, purification and properties of the lipid-linked intermediates of O-antigen biosynthesis. Arch. Biochem. Biophys. 116: 425–435.

    Article  PubMed  CAS  Google Scholar 

  • De Fekete M.A.R., Leloir L.F. & Cardini D.E. 1960. Mechanism of starch biosynthesis. Nature 187: 918–919.

    Article  Google Scholar 

  • Denyer K., Waite D., Edwards A., Martin C. & Smith A.M. 1999. Interaction with amylopectin influences the ability of granulebound starch synthase I to elongate malto-oligosaccharides. Biochem. J. 342: 647–653.

    Article  PubMed  CAS  Google Scholar 

  • Ditson S.L. & Mayer R.M. 1984. Dextransucrase: the direction of chain growth during autopolymerization. Carbohydr. Res. 126: 170–175.

    Article  CAS  Google Scholar 

  • Ebert K.H. & Schenk G. 1968. Mechanisms of biopolymer growth: the formation of dextran and levan. Adv. Enzymol. 30: 179–221.

    PubMed  CAS  Google Scholar 

  • Ewart M.H., Siminovitch D., Briggs D.R. 1954. Possible enzymic processes involved in starch-sucrose interconversions. Plant Physiol. 29: 407–413.

    PubMed  CAS  Google Scholar 

  • Fu D. & Robyt J.F. 1990. Acceptor reactions of maltodextrins with Leuconostoc mesenteroides B-512FM dextransucrase. Arch. Biochem. Biophys. 283: 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Fu D. & Robyt J.F. 1991. Maltodextrin acceptor reactions with Streptococcus mutans 6715 glucosyltransferases. Carbohydr. Res. 217: 201–211.

    Article  PubMed  CAS  Google Scholar 

  • Garcia R.C., Recondo E. & Dankert M. 1974. Polysaccharide biosynthesis in Acetobacter xylinum. Enzymatic synthesis of lipid diphosphate and monophosphate sugars. Eur. J. Biochem. 43: 93–105.

    Article  PubMed  CAS  Google Scholar 

  • Haigler C.H. 1991. Relationship between polymerization and crystallization, pp. 99–124. In: Haigler C.H. & Weimer P.J. (eds), Monofibril Biogenesis: Biosynthesis and Biodegradation of Cellulose, Marcel Dekker, New York.

    Google Scholar 

  • Han N.S. & Robyt J.F. 1998. The mechanism of Acetobacter xylinum cellulose biosynthesis: direction of chain elongation and the role of lipid pyrophosphate intermediates in the cell membrane. Carbohydr. Res. 313: 125–133.

    Article  CAS  Google Scholar 

  • Hanes C.S. 1940. The reversible formation of starch from glucose-1-phosphate catalyzed by potato phosphorylase. Proc. Roy. Soc. B. 129: 174–208.

    Article  CAS  Google Scholar 

  • Hepi L., Couso R.O. & Dankert M. 1993. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol. 175: 2490–2500.

    Google Scholar 

  • Koyama M., Helbert W., Imai T., Sugiyama J. & Henrissat B. 1997. Parallel-up structure evidences for the molecular directionality during biosynthesis of bacterial cellulose. Proc. Natl. Acad. Sci. USA 94: 9091–9095.

    Article  PubMed  CAS  Google Scholar 

  • Leloir L.F., De Fekete M.A.R. & Cardini C.E. 1961. Starch and oligosaccharide synthesis from uridine diphosphate glucose. J. Biol. Chem. 236: 636–641.

    PubMed  CAS  Google Scholar 

  • Liu T.F. & Shannon J.C. 1981. Measurement of metabolites associated with nonaqueously isolated starch granules from immature Zea mays L. endosperm. Plant Physiol. 67: 525–533.

    PubMed  CAS  Google Scholar 

  • Moulis C., Joucla G., Harrison D., Fabre E., Potocki-Veronese G., Monsan P. & Remaud-Simeon M. 2006. Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J. Biol. Chem. 281: 31254–31267.

    Article  PubMed  CAS  Google Scholar 

  • Mukerjea R. & Robyt J.F. 2005. Starch biosynthesis: the primer nonreducing-end mechanism versus the nonprimer reducing-end two-site insertion mechanism. Carbohydr. Res. 340: 245–255.

    Article  PubMed  CAS  Google Scholar 

  • Mukerjea R., Yu L. & Robyt J.F. 2002. Starch biosynthesis: mechanism for the elongation of starch chains. Carbohydr. Res. 337: 1015–1022.

    Article  PubMed  CAS  Google Scholar 

  • O’shea M.G., Samuel M.S., Konik C.M., Morell M.K. 1998. Fluophore-assisted carbohydrate electrophoresis (FACE) of oligosaccharides: efficiency of labeling and high resolution separation. Carbohydr. Res. 307: 1–12.

    Article  CAS  Google Scholar 

  • Parnaik V.K., Luzio G.A., Grahme D.A., Ditson S.L. & Mayer R.M. 1983. A D-glucosylated form of dextransucrase: preparation and characteristics. Carbohydr. Res. 121: 257–268.

    Article  PubMed  CAS  Google Scholar 

  • Recondo E. & Leloir L.F. 1961. Adenosine diphosphate glucose and starch synthesis. Biochem. Biophys. Res. Commun. 6: 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Robbins P.W., Bray D., Dankert M. & Wright A. 1967. Direction of chain growth in polysaccharide synthesis. Science 158: 1536–1542.

    Article  PubMed  CAS  Google Scholar 

  • Robyt J.F. 1995. Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv. Carbohydr. Chem. Biochem. 51: 133–168.

    Article  PubMed  CAS  Google Scholar 

  • Robyt J.F. & Eklund S.H. 1983. Relative quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr. Res. 121: 279–286.

    Article  PubMed  CAS  Google Scholar 

  • Robyt J.F., Kimble B.K. & Walseth T.F. 1974. The mechanism of dextransucrase action: I. Direction of dextran biosynthesis. Arch. Biochem. Biophys. 165: 634–644.

    Article  PubMed  CAS  Google Scholar 

  • Robyt J.F. & Martin P.J. 1983. Mechanism of synthesis of glucan by glucosyltransferaeses from Streptococcus mutans 6715. Carbohydr. Res. 113: 301–315.

    Article  PubMed  CAS  Google Scholar 

  • Robyt J.F. & Taniguchi H. 1976. The mechanism of dextransucrase action: II. Biosynthesis of branch linkages by acceptor reactions with dextran. Carbohydr. Res. 174: 129–137.

    CAS  Google Scholar 

  • Robyt J.F. & Walseth T.F. 1978. The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr. Res. 61: 433–444.

    Article  PubMed  CAS  Google Scholar 

  • Robyt J.F., Yoon S.H. & Mukerjea R. 2008. On the mechanism of the synthesis of B-512F dextran by Leuconostoc mesenteroides B-512FMC dextransucrase. Carbohydr. Res. (submitted).

  • Saxena I.M., Brown, Jr. R.M., Fevre M., Geremia R.A. & Henrissat B. 1995. Multidomain architecture of β-glycosyltransferase: implications for mechanism of action. J. Bacteriol. 177: 1419–1424.

    PubMed  CAS  Google Scholar 

  • Su D. & Robyt J.F. 1993. Control of the synthesis of dextran and acceptor-products by Leuconostoc mesenteroides B-512FM dextransucrase. Carbohydr. Res. 248: 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Su D. & Robyt J.F. 1994. Determination of the number of sucrose and acceptor binding sites for Leuconsotoc mesenteroides B-512FM dextransucrase and confirmation of the two-site mechanism for dextran synthesis. Arch. Biochem. Biophys. 308: 471–476.

    Article  PubMed  Google Scholar 

  • Swanson M.A. & Cori C.F. 1948. Structure of polysaccharides: III. Relation of structure to activation of phosphorylases. J. Biol. Chem. 172: 815–824.

    PubMed  CAS  Google Scholar 

  • Swissa M., Aloni Y., Weinhouse H. & Benziman M. 1980. Intermediary steps in Acetobacter xylinum cellulose synthesis: studies with whole cells and cell-free preparations of the wild type and a celluloseless mutant. J. Bacteriol. 143: 1142–1150.

    PubMed  CAS  Google Scholar 

  • Tomlinson K. & Denyer K. 2003. Starch synthesis in cereal grains. Adv. Bot. Res. 40: 1–61.

    Article  CAS  Google Scholar 

  • Trevelyan W.E., Mann P.F.E. & Harrison J.S. 1952. The phosphorylase reaction. I. Equilibrium constant: principles and preliminary survey. Arch. Biochem. Biophys. 39: 419–427.

    Article  PubMed  CAS  Google Scholar 

  • Ward J.B. & Perkins H.R. 1973. The direction of glycan synthesis in a bacterial peptidoglycan. Biochem. J. 135: 721–728.

    PubMed  CAS  Google Scholar 

  • Wright A., Dankert M., Fennessey P. & Robbins P.W. 1967. Characterization of a polyisoprenoid compound functional in O-antigen biosynthesis. Proc. Natl. Acad. Sci. USA 57: 1798–1803.

    Article  PubMed  CAS  Google Scholar 

  • Yoon S.H., Fulton D.B. & Robyt J.F. 2004. Enzymatic synthesis of two salicin analogues by reaction of salicyl alcohol with Bacillus macerans cyclomaltodextrin glucanyltransferase and Leuconostoc mesenteroides B-742CB dextransucrase. Carbohydr. Res. 339: 1517–1529.

    Article  PubMed  CAS  Google Scholar 

  • Yoon S.H. & Robyt J.F. 2002. Bacillus macerans cyclomaltodextrin glucanotransferase reactions with different ratios of D-glucose and cyclomaltohexaose. Carbohydr. Res. 337: 2245–2254.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Robyt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robyt, J.F. Mechanisms involved in the biosynthesis of polysaccharides. Biologia 63, 980–988 (2008). https://doi.org/10.2478/s11756-008-0168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0168-y

Key words

Navigation