Skip to main content

Advertisement

Log in

Structure-function relationships in human salivary α-amylase: role of aromatic residues in a secondary binding site

  • Full Paper
  • Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Human salivary α-amylase (HSAmy) has three distinct functions relevant to oral health: (i) hydrolysis of starch; (ii) binding to hydroxyapatite; and (iii) binding to bacteria (e.g. viridans streptococci). Oral bacteria utilize the starch hydrolyzing activity of HSAmy to derive their nutrients from dietary starch. Localized acid production by bacteria, through the metabolism of maltose generated by HSAmy, can lead to the dissolution of tooth enamel, a critical step in dental caries formation. HSAmy is a component of the acquired enamel pellicle and is used by Streptococcus gordonii to colonize the oral cavity. Although the active site of HSAmy for starch hydrolysis is well characterized, the regions responsible for the bacterial binding are yet to be defined. Since HSAmy possesses several secondary saccharide-binding sites in which aromatic residues are prominently located, we hypothesized that one of the secondary saccharide-binding sites harboring the aromatic residues W316 and W388, may play an important role in bacterial binding. To test this hypothesis, the aromatic residues W316 and W388 were mutated to alanine. The wild type and the mutant enzymes were characterized for their abilities to exhibit enzyme activity, starch binding and bacterial binding. Our results clearly showed that (i) the mutants W316A and W388A were not impaired in starch binding or bacterial binding; (ii) mutation of aromatic residues at these sites does not alter the overall conformation of the molecule; and (iii) the hydrolytic activity of the enzyme is unaffected against starch as substrates but reduced significantly against oligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berman H., Henrick K., Nakamura H. & Markley J.L. 2007. The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 35 (Database issue): D301–D303.

    Article  PubMed  CAS  Google Scholar 

  • Bernfeld P. 1955. Amylase, α and β. Methods Enzymol. 1: 49–150.

    Google Scholar 

  • Brayer G.D., Luo Y. & Withers S.G. 1995. The structure of human pancreatic α-amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Sci. 4: 1730–1742.

    PubMed  CAS  Google Scholar 

  • Brown A.E., Rogers J.D., Haase E.M., Zelasko P.M. & Scannapieco F.A. 1999. Prevalence of the amylase-binding protein A gene (abpA) in oral streptococci. J. Clin. Microbiol. 37: 4081–4085.

    PubMed  CAS  Google Scholar 

  • CCP4. 1994. The CCP4 Suite: Programs for Protein Crystallography. Acta Cryst. D50: 760–763.

    Google Scholar 

  • Douglas C.W. 1983. The binding of human salivary α-amylase by oral strains of streptococcal bacteria. Arch. Oral. Biol. 28: 567–573.

    Article  PubMed  CAS  Google Scholar 

  • Douglas C.W., Pease A.A. & Whiley R.A. 1990. Amylase-binding as a discriminator among oral streptococci. FEMS Microbiol. Lett. 54: 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Emsley P. & Cowtan K. 2004. Coot: model building tools for molecular graphics. Acta Cryst. D60: 2126–2132.

    CAS  Google Scholar 

  • Greenwood F.C., Hunter W.M. & Glover J.S. 1963. The preparation of I-131-labelled human growth hormone of high specific radioactivity. Biochem J. 89: 114–123.

    PubMed  CAS  Google Scholar 

  • Gwynn J.P. & Douglas C.W. 1994. Comparison of amylase-binding proteins in oral streptococci. FEMS Microbiol. Lett. 124: 373–379.

    Article  PubMed  CAS  Google Scholar 

  • Handley P., Coykendall A., Beighton D., Hardie J.M. & Whiley R.A. 1991. Streptococcus crista sp. nov., a viridans streptococcus with tufted fibrils, isolated from the human oral cavity and throat. Int. J. Syst. Bacteriol. 41: 543–547.

    Article  PubMed  CAS  Google Scholar 

  • Kandra L., Gyemant G., Remenyik J., Ragunath C. & Ramasubbu N. 2003. Subsite mapping of human salivary α-amylase and the mutant Y151M. FEBS Lett. 544: 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Lamzin V.S. & Wilson K.S. 1993. Automated refinement of protein models. Acta Cryst. D49: 129–149.

    CAS  Google Scholar 

  • Laskowski R.A., Macarthur M.W., Moss D.S. & Thornton J.M. 1993. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26: 283–291.

    Article  CAS  Google Scholar 

  • Loo C.Y., Corliss D.A. & Ganeshkumar N. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182: 1374–1382.

    Article  PubMed  CAS  Google Scholar 

  • MacGregor E.A., Janecek S. & Svensson B. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1–20.

    PubMed  CAS  Google Scholar 

  • Mishra P.J., Ragunath C. & Ramasubbu N. 2002. The mechanism of salivary amylase hydrolysis: role of residues at subsite S2’. Biochem. Biophys. Res. Commun. 292: 468–473.

    Article  PubMed  CAS  Google Scholar 

  • Otwinowski Z. & Minor W. 1997. Processing of X-ray crystallographic data in oscillation mode. Methods Enzymol. 276: 307–326.

    Article  CAS  Google Scholar 

  • Ragunath C., Sundar K. & Ramasubbu N. 2002. Expression, characterization, and biochemical properties of recombinant human salivary amylase. Protein Expr. Purif. 24: 202–211.

    Article  PubMed  CAS  Google Scholar 

  • Ramasubbu N., Bhandary K.K., Scannapieco F.A. & Levine M.J. 1991. Crystallization and preliminary X-ray diffraction studies of human salivary α-amylase. Proteins 11: 230–232.

    Article  PubMed  CAS  Google Scholar 

  • Ramasubbu N., Paloth V., Luo Y., Brayer G.D. & Levine M.J. 1996. Structure of human salivary α-amylase at 1.6 Å resolution: implications for its role in the oral cavity. Acta Cryst. D52: 435–446.

    CAS  Google Scholar 

  • Ramasubbu N., Ragunath C. & Mishra P.J. 2003. Probing the role of a mobile loop in substrate binding and enzyme activity of human salivary amylase. J. Mol. Biol. 325: 1061–1076.

    Article  PubMed  CAS  Google Scholar 

  • Ramasubbu N., Ragunath C., Mishra P.J., Thomas L.M., Gyemant G. & Kandra L. 2004. Human salivary α-amylase Trp58 situated at subsite −2 is critical for enzyme activity. Eur. J. Biochem. 271: 2517–2529.

    Article  PubMed  CAS  Google Scholar 

  • Remenyik J., Ragunath C., Ramasubbu N., Gyemant G., Liptak A. & Kandra L. 2003. Introducing transglycosylation activity into human salivary α-amylase (HSA). Org. Lett. 5: 4895–4898.

    Article  PubMed  CAS  Google Scholar 

  • Rogers J.D., Haase E.M., Brown A.E., Douglas C.W., Gwynn J.P. & Scannapieco F.A. 1998. Identification and analysis of a gene (abpA) encoding a major amylase-binding protein in Streptococcus gordonii. Microbiology 144: 1223–1233.

    PubMed  CAS  Google Scholar 

  • Rogers J.D., Palmer R.J., Jr., Kolenbrander P.E. & Scannapieco F.A. 2001. Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. Infect. Immun. 69: 7046–7056.

    Article  PubMed  CAS  Google Scholar 

  • Scannapieco F.A., Bergey E.J., Reddy M.S. & Levine M.J. 1989. Characterization of salivary α-amylase binding to Streptococcus sanguis. Infect. Immun. 57: 2853–2863.

    PubMed  CAS  Google Scholar 

  • Scannapieco F.A., Bhandary K., Ramasubbu N. & Levine M.J. 1990. Structural relationship between the enzymatic and streptococcal binding sites of human salivary α-amylase. Biochem. Biophys. Res. Commun. 173: 1109–1115.

    Article  PubMed  CAS  Google Scholar 

  • Scannapieco F.A., Haraszthy G.G., Cho M.I. & Levine M.J. 1992. Characterization of an amylase-binding component of Streptococcus gordonii G9B. Infect. Immun. 60: 4726–4733.

    PubMed  CAS  Google Scholar 

  • Scannapieco F.A., Solomon L. & Wadenya R.O. 1994. Emergence in human dental plaque and host distribution of amylase-binding streptococci. J Dent. Res. 73: 1627–1635.

    PubMed  CAS  Google Scholar 

  • Scannapieco F.A., Torres G. & Levine M.J. 1993. Salivary α-amylase: role in dental plaque and caries formation. Crit. Rev. Oral Biol. Med. 4: 301–307.

    PubMed  CAS  Google Scholar 

  • Scannapieco F.A., Torres G.I. & Levine M.J. 1995. Salivary amylase promotes adhesion of oral streptococci to hydroxyapatite. J. Dent. Res. 74: 1360–1366.

    Article  PubMed  CAS  Google Scholar 

  • Tseng C.C., Scannapieco F.A. & Levine M.J. 1992. Use of a replica-plate assay for the rapid assessment of salivary protein-bacteria interactions. Oral Microbiol. Immunol. 7: 53–56.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayanan Ramasubbu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragunath, C., Manuel, S.G.A., Kasinathan, C. et al. Structure-function relationships in human salivary α-amylase: role of aromatic residues in a secondary binding site. Biologia 63, 1028–1034 (2008). https://doi.org/10.2478/s11756-008-0163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0163-3

Key words

Navigation