Skip to main content

Advertisement

Log in

Use of algae in the study of essential cell processes

  • Review
  • Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Maintenance of genomic stability is of crucial importance for all living organisms. It is no surprise that during evolution, a series of highly selective and efficient systems to detect DNA damage and control its repair have evolved. To this end, signal transduction pathways are involved in pausing the cell division cycle to provide time for repair, and ultimately releasing the cell cycle from arrest. Genetic components of the damage and replication checkpoints have been identified and a working model is beginning to emerge. This area of biological inquiry has received a great deal of attention in the past decade with the realization that the underlying regulatory mechanisms controlling the cell cycle are conserved throughout eukaryotic evolution. Many of the key players in this response have structural and functional counterparts in species as diverse as yeast and human. In recent years attention has also been paid to the plant kingdom suggesting that checkpoint controls have been highly conserved during evolution. The unicellular green alga Chlamydomonas reinhardtii is a suitable model organism for the study of basic cellular processes including cell cycle regulation and DNA repair. To investigate how algal cells accomplish these tasks, we have isolated mutants in the recognition and repair of DNA damage or in the response to DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham R.T. 2001 Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15: 2177–2196.

    Article  PubMed  CAS  Google Scholar 

  • Armbrust E.V. 1998. Uniparental inheritance of chloroplast genomes. In: Rochaix. J.-D., Goldschmidt-Clermont M. & Merchant S. (eds), The molecular biology of chloroplasts and mitochondria in Chlamydomonas. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Berry L.D. & Gould K.L. 1996. Regulation of Cdc2 activity by phosphorylation at T14/T15, pp. 99–105. In: Meijer L., Guidet S. & Vogel L. (eds), Progress in Cell Cycle Research, Vol. 2, Plenum Press, New York.

    Google Scholar 

  • Berthold P., Schmitt R. & Mages W. 2002. An engineered Streptomyces hygroscopicus aph7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153: 401–412.

    Article  PubMed  CAS  Google Scholar 

  • Bišová K., Krylov D.M. & Umen J.G. 2005. Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. Plant Physiol. 137: 475–491.

    Article  PubMed  Google Scholar 

  • Bišová K., Vítová M. & Zachleder V. 2000. The activity of total histone H1 kinases is related to growth and commitment points while the p13(suc1)-bound kinase activity relates to mitoses in the alga Scendesmus quadricauda. Plant Physiol. Biochem. 38: 755–764.

    Article  Google Scholar 

  • Carrington J.C. & Ambros V. 2003. Role of microRNAs in plant and animal development. Science 301(5631): 336–338.

    Article  PubMed  CAS  Google Scholar 

  • Cenkci B., Petersen J.L. & Small G.D. 2003. REX1, a novel gene required for DNA repair. J Biol Chem. 278(25): 22574–22577.

    Article  PubMed  CAS  Google Scholar 

  • Cerutti H. 2003. RNA interference: traveling in the cell and gaining functions? Trends Genet. 19(1): 39–46.

    Article  PubMed  CAS  Google Scholar 

  • Culligan K., Tissier A. & Britt A. 2004. ATR regulates a G2-phase cell-cycle checkpoint in Arabidopsis thaliana. Plant Cell 16: 1091–1104.

    Article  PubMed  CAS  Google Scholar 

  • Davies J., Weeks D.P. & Grossman A.R. 1992. Expression of arylsulphatase gene from the β2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acid Res. 20: 2959–2965.

    Article  PubMed  CAS  Google Scholar 

  • Debuchy R., Purton S. & Rochaix J.D. 1989. The arginosuccinate lyase gene of Chlamydomonas reinhardtii: An important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J. 8: 2803–2809.

    PubMed  CAS  Google Scholar 

  • De Schutter K., Joubes J., Cools T., Verkest A., Correlou F., Babiychuk E., Van Der Cchueren E., Beeckman T., Kushnir S., Inze D. & De Veylder L. 2007. Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell 19: 211–225.

    Article  PubMed  Google Scholar 

  • Donnan L. & John P.C. 1983. Cell cycle control by timer and sizer in Chlamydomonas. Nature 304: 630–633.

    Article  PubMed  CAS  Google Scholar 

  • Fuhrmann M., Oertel W. & Hegemann P. 1999. A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J. 19: 353–361.

    Article  PubMed  CAS  Google Scholar 

  • Garcia V., Bruchet H., Camescasse D., Granier F., Bouchez D. & Tissier, A. 2003. AtATM is essential for meiosis and the somatic response to DNA damage in plants. Plant Cell 15: 119–132.

    Article  PubMed  CAS  Google Scholar 

  • Goodenough U.W. 1992. Green yeast — meeting review. Cell 70: 533–538.

    Article  PubMed  CAS  Google Scholar 

  • Grossman A.R. 2000. Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Curr. Opin. Plant Biol. 3: 132–137.

    Article  PubMed  CAS  Google Scholar 

  • Grossman A.R., Lohr M. & Im C.S. 2004. Chlamydomonas reinhardtii in the landscape of pigments. Ann Rev Genet 38: 119–173.

    Article  PubMed  CAS  Google Scholar 

  • Hanin M. & Paszkowski J. 2003. Plant genome modification by homologous recombination. Curr. Opin. Plant Biol. 6: 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Hannon G.J. 2002. RNA interference. Nature 418(6894): 244–251.

    Article  PubMed  CAS  Google Scholar 

  • Harris E.H. 1989. The Chlamydomonas sourcebook. Academic Press, New York, N.Y.

    Google Scholar 

  • Harper J.D.I. 1999. Chlamydomonas cell cycle mutants. Inter. Rev. Cytol. 189: 131–176.

    Article  Google Scholar 

  • Henikoff S., Till B. J. & Comai L. 2004. TILLING. Traditional Mutagenesis Meets Functional Genomics. Plant Physiol. 135(2): 630–636.

    Article  PubMed  CAS  Google Scholar 

  • Inze D. & De Veylder L. 2006. Cell cycle regulation in plant development. Annu. Rev. Genet. 40: 77–105.

    Article  PubMed  CAS  Google Scholar 

  • Jain M., Shrager J., Harris E.H., Halbrook R., Grossman A.R., Hauser C. & Vallon O. 2007. EST assembly supported by a draft genome sequence: an analysis of the Chlamydomonas reinhardtii transcriptome. Nuc. Acid Res. 35(6): 2075–2083.

    Article  Google Scholar 

  • John P.C.L. 1984. Control of the cell division cycle in Chlamydomonas. Microbial. Sci. 1: 96–101.

    CAS  Google Scholar 

  • John P.C., Sek F.J. & Lee M.G. 1989 A homolog of the cell cycle control protein p34cdc2 participates in the division cycle of Chlamydomonas, and a similar protein is detectable in higher plants and remote taxa. Plant Cell 1: 1185–1193.

    Article  PubMed  CAS  Google Scholar 

  • Kathir P., LaVoie M., Brazelton W.J., Haas N.A., Lefebvre P.A. & Silflow, C.D. 2003. Molecular map ot the Chlamydomonas reinhardtii nuclear genome. Eukar. Cell 2(2): 362–379.

    Article  CAS  Google Scholar 

  • Kindle K.L. 1990. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 87: 1228–1232.

    Article  PubMed  CAS  Google Scholar 

  • Kurz E.U. & Lees-Miller S.P. 2004. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair 3: 889–900.

    Article  PubMed  CAS  Google Scholar 

  • La Fontaine S., Quinn J.M., Nakamoto S.S., Dudley Page, M., Göhre V., Moseley J.L., Kropat J. & Merchant S. 2002. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukar. Cell 1(5): 736–757.

    Article  Google Scholar 

  • Lees E. 1995. Cyclin dependent kinase regulation. Curr. Opin. Cell Biol. 7: 773–780.

    Article  PubMed  CAS  Google Scholar 

  • Lien T. & Knutsen G. 1979. Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): A review of optimal conditions. J. Phycol. 15: 191–200.

    Article  CAS  Google Scholar 

  • Mages W., Heinrich O., Treuner G., Vlcek D., Daubnerova I. & Slaninova M. 2007. Complementation of the Chlamydomonas reinhardtii arg7-8 (arg2) point mutation by recombination with a truncated nonfunctional ARG7. Gene. Protist. 2007 Jul 2; (Epub ahead of print)

  • Merchant S. 1998. Synthesis of metalloproteins involved in photosynthesis: plastocyanin and cytochromes, pp. 597–611. In: Rochaix J.-D., Goldschmidt-Clermont M. & S. Merchant (eds), Molecular biology of Chlamydomonas: chloroplasts and mitochondria. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Murray A.W. 2004. Recycling the cell cycle: Cyclins revisited. Cell 116: 221–234.

    Article  PubMed  CAS  Google Scholar 

  • Nagel G., Szellas T., Kateriya S., Adeishvili N, Hegemann P. & Bamberg E. 2005. Channelrhodopsins: directly light-gated cation channels. Biochem. Soc. Trans. 33: 863–866.

    Article  PubMed  CAS  Google Scholar 

  • Ohi R. & Gould K.L. 1999. Regulating the onset of mitosis. Curr. Opin. Cell Biol. 11: 267–273.

    Article  PubMed  CAS  Google Scholar 

  • Pan J., Misamore M.J., Wang Q., Snell W.J. 2003. Protein transport and signal transduction during fertilization in Chlamydomonas. Traffic 4: 452–459.

    Article  PubMed  CAS  Google Scholar 

  • Petersen J.L., Lang D. & Small G.D. 1999. Cloning and characterization of class 11 DNA photolyase from Chlamydomonas. Plant. Mol. Biol. 40: 1063–1071.

    Article  PubMed  CAS  Google Scholar 

  • Rochaix J.D. 1995. Chlamydomonas reinhardtii as the photosynthetic yeast. Ann. Rev. Genet. 29: 209–230.

    Article  PubMed  CAS  Google Scholar 

  • Rohr J., Sarkar N, Balenger S., Jeong B. & Cerutti H. 2004. Tandem inverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas. Plant J. 40: 611–621.

    Article  PubMed  CAS  Google Scholar 

  • Roos-Mattjus P., Vroman B.T., Burtelow M.A., Rauen M., Eapen A.K. & Karnitz L.M. 2002. Genotoxin-induced Rad9-Hus1-Rad1 (9-1-1) chromatin association in an early signaling event. J. Biol. Chem. 277: 43809–43812.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum J.L., Cole D.G. & Diener D.R. 1999. Intraflagellar transport: the eyes have it. J. Cell. Biol. 144: 385–388.

    Article  PubMed  CAS  Google Scholar 

  • Rymarquis L.A., Handley J.M., Thomas M. & Stern D. 2005. Beyond complementation. Map-based cloning in Chlamydomonas reinhardtii. Plant Physiol. 137: 557–566.

    Article  PubMed  CAS  Google Scholar 

  • Sager R. & Lane D. 1972. Molecular basis of maternal inheritance. Proc. Natl. Acad. Sci. USA 69: 2410–2413.

    Article  PubMed  CAS  Google Scholar 

  • Sancar A., Lindsey-Boltz L.A., Unsal-Kacmaz K. & Linn S. 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73: 39–85.

    Article  PubMed  CAS  Google Scholar 

  • Seiler J.P. 1975. Toxicology and genetic effects of benzimidazole compounds. Mutat. Res. 32: 51–68.

    Google Scholar 

  • Schiestl R.H., Reynolds P. & Prakash L. 1989. Cloning and sequence analysis of the Saccharomyces cerevisiae RAD9 gene and further evidence that its product is required for cell cycle arrest induced by DNA damage. Mol. Cell. Biol. 9: 1882–1896.

    PubMed  CAS  Google Scholar 

  • Shimogawara K., Fujiwara S., Grossman A.R. & Usuda H. 1998. High efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148: 1821–1828.

    PubMed  CAS  Google Scholar 

  • Sholey J.M. & Anderson K.V. 2006. Intraflagellar transport and cilium-based signaling. Cell 125: 439–442.

    Article  Google Scholar 

  • Shrager J., Hauser C., Chang C.W., Harris E.H., Davies J., McDermott J., Tamse R., Zhang Z. & Grossman A.R. 2003. Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol. 131: 401–408.

    Article  PubMed  Google Scholar 

  • Sizova I., Fuhrmann M. & Hegemann P. 2001. A Streptomyces rimosus aphVII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277: 221–229.

    Article  PubMed  CAS  Google Scholar 

  • Slaninová M., Nagyová B., Gálová E., Hendrychová J., Bišová K., Zachleder V. & Vlček D. 2003. The alga Chlamydomonas reinhardtii UVS11 gene is responsible for cell division delay and temporal decrease in histone H1 kinase activity caused by UV irradiation. DNA Repair 2: 737–750.

    Article  PubMed  Google Scholar 

  • Slaninová M., Ševčovičová A., Nagyová B., Miadoková E., Vlčková V. & Vlček D. 2002. Chlamydomonas reinhardtii UVS11 gene is required for cell cycle arrest in response to DNA damage. Arch. Hydrobiol./Algol. Stud. 107: 123–131.

    Google Scholar 

  • Sodeinde O.A. & Kindle K.A. 1993. Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 90: 199–203.

    Article  Google Scholar 

  • Soupene E., King N., Feild E., Liu P., Niyogi K.K., Huang C.-H. & Kustu, S. 2002. Rhesus expression in a green alga is regulated by CO2. Proc. Natl. Acad. Sci. USA 99(11): 7769–7773.

    Article  PubMed  CAS  Google Scholar 

  • Spudich J.L. & Sager R. 1980. Regulation of the Chlamydomonas cell cycle by light and dark. J. Cell. Biol. 85: 136–145.

    Article  PubMed  CAS  Google Scholar 

  • Stevens D.R., Rochaix J.D. & Purton S. 1996. The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol. Gen. Genet. 251: 23–30.

    PubMed  CAS  Google Scholar 

  • Tam L.-W. & Lefebvre P.A. 1993. Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135: 375–384.

    PubMed  CAS  Google Scholar 

  • Umen J.G & Goodenough U.W. 2001. Chloroplast DNA methylation and inheritance in Chlamydomonas. Genes Dev. 15(19): 2585–2597.

    Article  PubMed  CAS  Google Scholar 

  • Vítová M. & Zachleder V. 2005. Points of commitment to reproductive events as a tool for analysis of the cell cycle in synchronous cultures of algae. Folia Microbiol. 50: 141–149.

    Article  Google Scholar 

  • Weinert T.A. & Hartwell L.H. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae, Science 241: 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Whitman G.B. 1993. Chlamydomonas phototaxis. Trends Cell Biol. 3: 403–408.

    Article  Google Scholar 

  • Yang J., Xu Z.P., Huang Y., Hamrick H.E., Duerksen-Hughes P.J. & Yu Y.N. 2004. ATM and ATR: Sensing DNA damage. World J. Gastroenterol. 10(2): 155–160.

    PubMed  CAS  Google Scholar 

  • Zachleder V., Schläfli O. & Boschetti A. 1997. Growth-controlled oscillation in activity of histone H1 kinase during the cell cycle of Chlamydomonas reinhardtii (Chlorophyta). J. Phycol. 33: 673–681.

    Article  CAS  Google Scholar 

  • Zachleder V. & van den Ende H. 1992. Cell cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors. J. Cell Sci. 102: 469–474.

    CAS  Google Scholar 

  • Zhao B., Schneid C., Iliev D., Schmidt E.M., Wagner V., Wollnik F. & Mittag M. 2004. The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunits. Eukaryot. Cell 3(3): 815–825.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ševčovičová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ševčovičová, A., Hamzová, A., Gálová, E. et al. Use of algae in the study of essential cell processes. Biologia 63, 952–957 (2008). https://doi.org/10.2478/s11756-008-0148-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0148-2

Key words

Navigation