Abstract
Targeted modification of the genome has long been an aim of many geneticists and biotechnologists. Gene targeting is a main molecular tool to examine biological effects of genes in a controlled environment. Effective gene targeting depends on the frequency of homologous recombination that is indispensable for the insertion of foreign DNA into a specific sequence of the genome. The main problem associated with the development of an optimal procedure for gene targeting in a particular organism is the variability of homologous recombination (HR) in different species. Chlamydomonas reinhardtii is an attractive model system for the study of many cellular processes and is also an interesting object for the biotechnology industry. In spite of many advantages of this model system, C. reinhardtii does not readily express heterologous genes and does not allow targeted integration of foreign DNA into its genome easily. This paper compares data obtained from several different experiments designed for improving gene targeting in different organisms and reviews the suitability of particular techniques in C. reinhardtii cells.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Baur M., Potrykus I. & Paszkowski J. 1990. Intermolecular homologous recombination in plants. Mol. Cell. Biol. 10: 492–500.
Belfort M. & Roberts R. J. 1997. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 25: 3379–3388.
Bilang R., Peterhans A., Bogucki A. & Paszkowski J. 1992. Single-stranded DNA as a recombination substrate in plants as assessed by stable and transient recombination assays. Mol. Cell. Biol. 12: 329–336.
Brendel V., Brocchieri L., Sandler S.J., Clark A.J. & Karlin S. 1997. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J. Mol. Evol. 44: 528–541.
Brozmanová J., Černáková L., Vlčková V., Duraj J. & Fridrichová I. 1991. The Escherichia coli recA gene increases resistance of the yeast Saccharomyes cerevisiae to ionizing and ultraviolet radiation. Mol. Gen. Genet. 227: 473–480.
Brozmanová J., Vlčková V. & Chovanec M. 2004. How heterologously expressed Escherichia coli genes contribute to understanding DNA repair processes in Saccharomyes cerevisiae. Curr. Genet. 46: 317–330.
Cerutti H., Johnson A.M., Boynton J.E. & Gillham N.W. 1995. Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Mol. Cell. Biol. 15: 3003–3011.
Cerutti H., Johnson A.M., Gillham N.W. & Boynton J.E. 1997. Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. Plant Cell 9: 925–945.
Chandrasegaran S. & Smith J. 1999. Chimeric restriction enzymes: what is the next? Biol. Chem. 380: 841–848.
Dudáš A., Marková E., Vlasáková D., Kolman A., Bartošová Z., Brozmanová J. & Chovanec M. 2003. The Escherichia coli RecA protein complements recombination defective phenotype of the Saccharomyes cerevisiae rad52 mutant cells. Yeast 20: 389–396.
Dürrenberger F., Thompson A.J., Herrin D.L. & Rochaix J.D. 1996. Double strand break-induced recombination in Chlamydomonas reinhardtii chloroplasts. Nucleic Acids Research 24: 3323–3331.
Epinat J.C., Arnould S., Chames P., Rochaix P., Desfontaines D., Puzin C., Patin A., Zanghellini A., Pâques F. & Lacroix E. 2003. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucl. Acids. Res. 31: 2952–2962.
Gumpel N.J., Rochaix J.D. & Purton S. 1994. Studies on homologous recombination in the green alga Chlamydomonas reinhardtii. Curr. Genet. 26: 438–442.
Hastings P.J., McGill C., Shafer B. & Strathern J.N. 1993. Ends-in vs. ends-out recombination in yeast. Genetics 135: 973–980.
Hinnen A., Hicks J.B. & Fink G.R. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75: 1929–1933.
Johnson R.D. & Jasin M. 2001. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29: 196–201.
Kandavelou K., Mani M., Durai S. & Chandrasegaran S. 2004. Nucleic Acids and Molecular biology (Springer-Verlag, Heidelberg, Germany) 14: 413–434.
Kim Y.G., Cha J. & Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusion to FokI cleavage domain. Proc. Natl. Acad. Sci. USA 93: 1156–1160.
Klinner U. & Schäfer B. 2004. Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS Microbiol. Rev. 28: 201–223.
Leung W.Y., Malkova A. & Haber J.E. 1997. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA 94: 6851–6856.
Lloyd A.T. & Sharp P.M. 1993. Evolution of the recA gene and the molecular phylogeny of bacteria. J. Mol. Evol. 37: 399–407.
Mages W., Heinrich O., Treuner G., Vlcek D., Daubnerova I. & Slaninova M. 2007. Complementation of the Chlamydomonas reinhardtii arg2 (arg7-8) point mutation by recombination with a truncated nonfunctional ARG7 gene. Protist 158: 435–446.
Morais M.A., Vlčková V., Fridrichová I., Slaninová M., Brozmanová J. & Henriques J.A.P. 1998. Effect of bacterial recA expression on DNA repair in the rad51 and rad52 mutants of Saccharomyes cerevisiae. Genet. Mol. Biol. 21: 3–9.
Nelson J.A.E. & Lefebvre P.A. 1995. Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii. Mol. Cell Biol. 15: 5762–5769.
Nomura N., Morinaga Y., Shirai N. & Sako Y. 2005. I-ApeI: a novel intron-encoded LAGLIDADG homing endonuclease from the archaeon, Aeropyrum pernix K1. Nucl. Acids. Res. 33: 1–8.
Porteus M.H. & Carroll D. 2005. Gene targeting using zinc finger nucleases. Nature Biotechnology 23: 967–973.
Rauth S., Song K.Y., Ayares D., Wallace L., Moore P.D. & Kucherlapati R. 1986. Transfection and homologous recombination involving single-stranded DNA substrates in mammalian cells and nuclear extracts. Proc. Natl. Acad. Sci. USA 83: 5587–5591.
Reiss B., Klemm M., Kosak H. & Schell J. 1996. RecA protein stimulates homologous recombination in plants. Proc. Natl. Acad. Sci. USA 93: 3094–3098.
Reiss B., Schubert I., Kopchen K., Wendeler E., Schell J. & Puchta H. 2000. RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by Agrobacterium. Proc. Natl. Acad. Sci. USA 97: 3358–3363.
Rich T., Allen R.L. & Wyllie A.H. 2000. Defying death after DNA damage. Nature 407: 777–783.
Rochaix J.D. & Malnoe P. 1978. Anatomy of the chloroplast ribosomal DNA of Chlamydomonas reinhardtii. Cell 15: 661–670.
Rouet F., Smih F. & Jasin M. 1994. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91: 6064–6068.
Shaked H., Melamed-Bessudo C. & Levy A.A. 2005. High frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc. Natl. Acad. Sci. USA 102: 12265–12269.
Shcherbakova O.G., Lanzov V.A., Ogawa H. & Filatov M.V. 2000. Overexpression of bacterial RecA protein stimulates homologous recombination in somatic mammalian cells. Mutat. Res. DNA Repair 459: 65–71.
Simon J.R. & Moore P.D. 1987. Homologous recombination between single-stranded DNA and chromosomal genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 2329–2334.
Slaninová M., Vlčková V., Brozmanová J., Morais M.A. & Henriques J.A.P. 1996. Biological consequences of E.coli RecA protein expression in the repair defective pso4-1 and rad51::URA3 mutants of S. cerevisiae after treatment with N-methyl-N′-nitro-N-nitrosoguanidine. Neoplasma 43: 315–319.
Smith K. 2001. Theoretical mechanisms in targeted and random integration of transgene DNA. Reprod. Nutr. Dev. 41: 465–485.
Sodeinde O.A. & Kindle K.L. 1993. Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 90: 9199–9203.
Sonoda E., Hochegger H., Saberi A., Taniguchi Y. & Takeda S. 2006. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair 5: 1021–1029.
Taccioli G.E., Rathbun G., Oltz E., Stamato T., Jeggo P.A. & Alt F.W. 1993. Impairment of V(D)J recombination in double-strand break repair mutants. Science 260: 207–210.
Tzfira T. & White C. 2005. Towards targeted mutagenesis and gene replacement in plants. Trends Biotechnol. 23: 567–569.
Zorin B., Hegemann P. & Sizova I. 2005. Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot. Cell 4: 1264–1272.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Slaninová, M., Hroššová, D., Vlček, D. et al. Is it possible to improve homologous recombination in Chlamydomonas reinhardtii?. Biologia 63, 941–946 (2008). https://doi.org/10.2478/s11756-008-0146-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2478/s11756-008-0146-4

