Skip to main content

Advertisement

Log in

Is it possible to improve homologous recombination in Chlamydomonas reinhardtii?

  • Review
  • Botany
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Targeted modification of the genome has long been an aim of many geneticists and biotechnologists. Gene targeting is a main molecular tool to examine biological effects of genes in a controlled environment. Effective gene targeting depends on the frequency of homologous recombination that is indispensable for the insertion of foreign DNA into a specific sequence of the genome. The main problem associated with the development of an optimal procedure for gene targeting in a particular organism is the variability of homologous recombination (HR) in different species. Chlamydomonas reinhardtii is an attractive model system for the study of many cellular processes and is also an interesting object for the biotechnology industry. In spite of many advantages of this model system, C. reinhardtii does not readily express heterologous genes and does not allow targeted integration of foreign DNA into its genome easily. This paper compares data obtained from several different experiments designed for improving gene targeting in different organisms and reviews the suitability of particular techniques in C. reinhardtii cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Baur M., Potrykus I. & Paszkowski J. 1990. Intermolecular homologous recombination in plants. Mol. Cell. Biol. 10: 492–500.

    PubMed  CAS  Google Scholar 

  • Belfort M. & Roberts R. J. 1997. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 25: 3379–3388.

    Article  PubMed  CAS  Google Scholar 

  • Bilang R., Peterhans A., Bogucki A. & Paszkowski J. 1992. Single-stranded DNA as a recombination substrate in plants as assessed by stable and transient recombination assays. Mol. Cell. Biol. 12: 329–336.

    PubMed  CAS  Google Scholar 

  • Brendel V., Brocchieri L., Sandler S.J., Clark A.J. & Karlin S. 1997. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J. Mol. Evol. 44: 528–541.

    Article  PubMed  CAS  Google Scholar 

  • Brozmanová J., Černáková L., Vlčková V., Duraj J. & Fridrichová I. 1991. The Escherichia coli recA gene increases resistance of the yeast Saccharomyes cerevisiae to ionizing and ultraviolet radiation. Mol. Gen. Genet. 227: 473–480.

    Article  PubMed  Google Scholar 

  • Brozmanová J., Vlčková V. & Chovanec M. 2004. How heterologously expressed Escherichia coli genes contribute to understanding DNA repair processes in Saccharomyes cerevisiae. Curr. Genet. 46: 317–330.

    Article  PubMed  Google Scholar 

  • Cerutti H., Johnson A.M., Boynton J.E. & Gillham N.W. 1995. Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Mol. Cell. Biol. 15: 3003–3011.

    PubMed  CAS  Google Scholar 

  • Cerutti H., Johnson A.M., Gillham N.W. & Boynton J.E. 1997. Epigenetic silencing of a foreign gene in nuclear transformants of Chlamydomonas. Plant Cell 9: 925–945.

    Article  PubMed  CAS  Google Scholar 

  • Chandrasegaran S. & Smith J. 1999. Chimeric restriction enzymes: what is the next? Biol. Chem. 380: 841–848.

    Article  PubMed  CAS  Google Scholar 

  • Dudáš A., Marková E., Vlasáková D., Kolman A., Bartošová Z., Brozmanová J. & Chovanec M. 2003. The Escherichia coli RecA protein complements recombination defective phenotype of the Saccharomyes cerevisiae rad52 mutant cells. Yeast 20: 389–396.

    Article  PubMed  Google Scholar 

  • Dürrenberger F., Thompson A.J., Herrin D.L. & Rochaix J.D. 1996. Double strand break-induced recombination in Chlamydomonas reinhardtii chloroplasts. Nucleic Acids Research 24: 3323–3331.

    Article  PubMed  Google Scholar 

  • Epinat J.C., Arnould S., Chames P., Rochaix P., Desfontaines D., Puzin C., Patin A., Zanghellini A., Pâques F. & Lacroix E. 2003. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucl. Acids. Res. 31: 2952–2962.

    Article  PubMed  CAS  Google Scholar 

  • Gumpel N.J., Rochaix J.D. & Purton S. 1994. Studies on homologous recombination in the green alga Chlamydomonas reinhardtii. Curr. Genet. 26: 438–442.

    Article  PubMed  CAS  Google Scholar 

  • Hastings P.J., McGill C., Shafer B. & Strathern J.N. 1993. Ends-in vs. ends-out recombination in yeast. Genetics 135: 973–980.

    PubMed  CAS  Google Scholar 

  • Hinnen A., Hicks J.B. & Fink G.R. 1978. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75: 1929–1933.

    Article  PubMed  CAS  Google Scholar 

  • Johnson R.D. & Jasin M. 2001. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29: 196–201.

    Article  PubMed  CAS  Google Scholar 

  • Kandavelou K., Mani M., Durai S. & Chandrasegaran S. 2004. Nucleic Acids and Molecular biology (Springer-Verlag, Heidelberg, Germany) 14: 413–434.

    Google Scholar 

  • Kim Y.G., Cha J. & Chandrasegaran S. 1996. Hybrid restriction enzymes: zinc finger fusion to FokI cleavage domain. Proc. Natl. Acad. Sci. USA 93: 1156–1160.

    Article  PubMed  CAS  Google Scholar 

  • Klinner U. & Schäfer B. 2004. Genetic aspects of targeted insertion mutagenesis in yeasts. FEMS Microbiol. Rev. 28: 201–223.

    Article  PubMed  CAS  Google Scholar 

  • Leung W.Y., Malkova A. & Haber J.E. 1997. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc. Natl. Acad. Sci. USA 94: 6851–6856.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd A.T. & Sharp P.M. 1993. Evolution of the recA gene and the molecular phylogeny of bacteria. J. Mol. Evol. 37: 399–407.

    Article  PubMed  CAS  Google Scholar 

  • Mages W., Heinrich O., Treuner G., Vlcek D., Daubnerova I. & Slaninova M. 2007. Complementation of the Chlamydomonas reinhardtii arg2 (arg7-8) point mutation by recombination with a truncated nonfunctional ARG7 gene. Protist 158: 435–446.

    Article  PubMed  CAS  Google Scholar 

  • Morais M.A., Vlčková V., Fridrichová I., Slaninová M., Brozmanová J. & Henriques J.A.P. 1998. Effect of bacterial recA expression on DNA repair in the rad51 and rad52 mutants of Saccharomyes cerevisiae. Genet. Mol. Biol. 21: 3–9.

    CAS  Google Scholar 

  • Nelson J.A.E. & Lefebvre P.A. 1995. Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii. Mol. Cell Biol. 15: 5762–5769.

    PubMed  CAS  Google Scholar 

  • Nomura N., Morinaga Y., Shirai N. & Sako Y. 2005. I-ApeI: a novel intron-encoded LAGLIDADG homing endonuclease from the archaeon, Aeropyrum pernix K1. Nucl. Acids. Res. 33: 1–8.

    Article  Google Scholar 

  • Porteus M.H. & Carroll D. 2005. Gene targeting using zinc finger nucleases. Nature Biotechnology 23: 967–973.

    Article  PubMed  CAS  Google Scholar 

  • Rauth S., Song K.Y., Ayares D., Wallace L., Moore P.D. & Kucherlapati R. 1986. Transfection and homologous recombination involving single-stranded DNA substrates in mammalian cells and nuclear extracts. Proc. Natl. Acad. Sci. USA 83: 5587–5591.

    Article  PubMed  CAS  Google Scholar 

  • Reiss B., Klemm M., Kosak H. & Schell J. 1996. RecA protein stimulates homologous recombination in plants. Proc. Natl. Acad. Sci. USA 93: 3094–3098.

    Article  PubMed  CAS  Google Scholar 

  • Reiss B., Schubert I., Kopchen K., Wendeler E., Schell J. & Puchta H. 2000. RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by Agrobacterium. Proc. Natl. Acad. Sci. USA 97: 3358–3363.

    Article  PubMed  CAS  Google Scholar 

  • Rich T., Allen R.L. & Wyllie A.H. 2000. Defying death after DNA damage. Nature 407: 777–783.

    Article  PubMed  CAS  Google Scholar 

  • Rochaix J.D. & Malnoe P. 1978. Anatomy of the chloroplast ribosomal DNA of Chlamydomonas reinhardtii. Cell 15: 661–670.

    Article  PubMed  CAS  Google Scholar 

  • Rouet F., Smih F. & Jasin M. 1994. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91: 6064–6068.

    Article  PubMed  CAS  Google Scholar 

  • Shaked H., Melamed-Bessudo C. & Levy A.A. 2005. High frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc. Natl. Acad. Sci. USA 102: 12265–12269.

    Article  PubMed  CAS  Google Scholar 

  • Shcherbakova O.G., Lanzov V.A., Ogawa H. & Filatov M.V. 2000. Overexpression of bacterial RecA protein stimulates homologous recombination in somatic mammalian cells. Mutat. Res. DNA Repair 459: 65–71.

    Article  PubMed  CAS  Google Scholar 

  • Simon J.R. & Moore P.D. 1987. Homologous recombination between single-stranded DNA and chromosomal genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 2329–2334.

    PubMed  CAS  Google Scholar 

  • Slaninová M., Vlčková V., Brozmanová J., Morais M.A. & Henriques J.A.P. 1996. Biological consequences of E.coli RecA protein expression in the repair defective pso4-1 and rad51::URA3 mutants of S. cerevisiae after treatment with N-methyl-N′-nitro-N-nitrosoguanidine. Neoplasma 43: 315–319.

    PubMed  Google Scholar 

  • Smith K. 2001. Theoretical mechanisms in targeted and random integration of transgene DNA. Reprod. Nutr. Dev. 41: 465–485.

    Article  PubMed  CAS  Google Scholar 

  • Sodeinde O.A. & Kindle K.L. 1993. Homologous recombination in the nuclear genome of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 90: 9199–9203.

    Article  PubMed  CAS  Google Scholar 

  • Sonoda E., Hochegger H., Saberi A., Taniguchi Y. & Takeda S. 2006. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair 5: 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  • Taccioli G.E., Rathbun G., Oltz E., Stamato T., Jeggo P.A. & Alt F.W. 1993. Impairment of V(D)J recombination in double-strand break repair mutants. Science 260: 207–210.

    Article  PubMed  CAS  Google Scholar 

  • Tzfira T. & White C. 2005. Towards targeted mutagenesis and gene replacement in plants. Trends Biotechnol. 23: 567–569.

    Article  PubMed  CAS  Google Scholar 

  • Zorin B., Hegemann P. & Sizova I. 2005. Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot. Cell 4: 1264–1272.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslava Slaninová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slaninová, M., Hroššová, D., Vlček, D. et al. Is it possible to improve homologous recombination in Chlamydomonas reinhardtii?. Biologia 63, 941–946 (2008). https://doi.org/10.2478/s11756-008-0146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0146-4

Key words