Skip to main content
Log in

Adaptive and cross resistance to cadmium (II) and zinc (II) by Pseudomonas aeruginosa BC15

  • Full Paper
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Cadmium and zinc appear in the combined forms and they are co-pollutants. Cd is the most hazardous metal ion for human beings and causes renal dysfunction, liver and lungs damage, bone degeneration and blood damage. Though Zn is an essential nutrient, excess of Zn is toxic. Biological process was more important because conventional methods fail to remediate these pollutants due to high costs and less affordability. The screening and understanding of the functioning of microorganism plays an important role in removal and recovery of metals from heavy-metal-polluted water and soil. In our study, the strain Pseudomonas aeruginosa BC15 was isolated from oil-mill-treated waste water and it showed to be highly resistant to 6 mM Cd and 20 mM Zn in the solid and liquid media. The growth studies of BC15 strain in the medium without induction exhibited high tolerable capacity when compared to other microbes. Pretreatment of P. aeruginosa BC15 with sub-lethal concentrations of Cd induced adaptive resistance to lethal doses of Cd. Cadmium-induced cells also showed cross resistance to lethal concentration of zinc. The organism had high resistance against Cd and Zn. This has been clearly proven through biosorption studies: Cd was absorbed up to 62% and Zn about 60% in single solution, whereas in binary solution Cd was biosorbed up to 82% and Zn 85%. In conclusion, this study reveals the significance of using the strain P. aeruginosa BC15 in the bioremediation of Cd and Zn from industrial waste water and contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MIC:

minimal inhibitory concentration

LB:

luria bertani medium

TY:

tryptone yeast extract medium

References

  • Bagot D., Lebeau T., Jezequel K. & Fabre B. 2005. Selection of microorganisms for bioremediation of agricultural soils contaminated by cadmium. In: Litchfouse E., Schwarzbauer J. & Robert D. (eds) Environmental Chemistry, Springer, pp. 215–222.

  • Banjerdkij P., Vattanaviboon P. & Mongkolsuk S. 2003. Cadmium induced adaptive resistance and cross-resistance to zinc in Xanthomonas campestris. Curr. Microbiol. 47: 260–262.

    Article  PubMed  CAS  Google Scholar 

  • Blom A., Harder W. & Martin A. 1992. Unique and overlapping pollutant stress protein of Escherichia coli. Appl. Environ. Microbiol. 58: 331–334.

    PubMed  CAS  Google Scholar 

  • Brim H., Heyndrickx M., De Vos P., Wilmotte A., Springael D., Schlegel H.G. & Mergeay M. 1999. Amplified rDNA restriction analysis and further genotypic characterization of metal resistant soil bacteria and related facultative hydrogentrophs. Syst. Appl. Microbiol. 22: 258–268.

    PubMed  CAS  Google Scholar 

  • Caplan J.A. 1993. The worldwide bioremediation industry: prospects for profit. Trends Biotechnol. 11: 320–323.

    Article  PubMed  CAS  Google Scholar 

  • Cerebasi I.H. & Yetis U. 2001. Biosorption of Ni (II) and Pb (II) by Phanaerochaete chrysosporium from a binary metal system-kinetics. Water Res. 24: 15–20.

    Google Scholar 

  • Chen X.C., Shi J.Y., Chen Y.X., Xu X.H., Xu S.Y. & Wang Y.P. 2006. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can. J. Microbiol. 52: 308–316.

    Article  PubMed  CAS  Google Scholar 

  • Dua M., Sethunathan N. & Joshri A.K. 2002. Biotechnology and limitations. Appl. Microbiol. Biotechnol. 59: 143–152.

    Article  PubMed  CAS  Google Scholar 

  • Edward Raja C., Anbazhagan K. & Selvam G.S. 2006. Isolation and characterization of a metal-resistant Pseudomonas aeruginosa strain. World J. Microbiol. Biotechnol. 22: 577–586.

    Article  CAS  Google Scholar 

  • Endo G. & Silver S. 1995. CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J. Bacteriol. 177: 4437–4441.

    PubMed  CAS  Google Scholar 

  • Filali B.K., Taoufik J., Zeroual Y., Dzairi F.Z., Talbi M. & Blaghen M. 2000. Waste water bacterial isolates resistant to heavy metals and antibiotics. Curr. Microbiol. 41: 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Hassan M.T., Van der Lelie D., Springael D., Romling U., Ahmed N. & Mergeay M. 1999. Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238: 417–425.

    Article  PubMed  CAS  Google Scholar 

  • Hassen A., Saidi N., Cherif M. & Boudabous A. 2001. Resistance of environmental bacteria to heavy metals. Biores. Technol. 64: 7–15.

    Article  Google Scholar 

  • Hernandez A., Mellado R.P. & Martinez J.L. 1998. Metal accumulation and vanadium-induced multidrug resistance by environmental isolates of Escherichia herdmanni and Enterobacter cloacae. Appl. Environ. Microbiol. 64: 4317–4320.

    PubMed  CAS  Google Scholar 

  • Horitsu H., Yamamoto K., Wach S., Kawai K. & Fukuchi A. 1986. Plasmid determined cadmium resistance in Pseudomonas putida GAM-1 isolated from soil. J. Bacteriol. 165: 334–335.

    PubMed  CAS  Google Scholar 

  • Hussien H., Ibrahim S.F., Kandeel K. & Moawad H. 2004. Biosorption of heavy metals from waste water using Pseudomonas sp. Electronic J. Biotechnol. 7: 38–46.

    Google Scholar 

  • Kapoor A. & Viraraghavan T. 1995. Fungal biosorption-an alternative treatment option for heavy metal bearing wastewater: a review. Biores. Technol. 53: 195–206.

    Article  CAS  Google Scholar 

  • Khan M.K.R. & Malik A. 1998. Antibiotic resistance and detection of β lactamase in bacterial strains of Staphylococci and Escherichia coli isolated from food stuffs. World J. Microbiol. Biotechnol. 17: 863–868.

    Article  Google Scholar 

  • Mongkolsuk S., Vattanaviboon P. & Praitaum W. 1997. Induced adaptive and cross-protection responses against oxidative stress killing in a bacterial phytopathogen, Xanthomonas oryzae pv. oryzae. FEMS Microbiol. Lett. 146: 217–221.

    Article  CAS  Google Scholar 

  • Niebohr E., Jusys A.A., Julian R.T., Menon C.R., Hertzman C. & Muir D.C.F. 1988. Biological monitoring of Ontario cadmium workers: determinants of whole blood and urinary cadmium levels. In: International Meeting on Molecular Mechanisms of Metal Toxicity and Carcinogenicity, Collegio Universitario, Urbino, Italy, 19–22 September, poster.

  • Nies D.H. 1992. Resistance to cadmium, cobalt, zinc and nickel in microbes. Plasmid 27: 17–28.

    Article  PubMed  CAS  Google Scholar 

  • Nies D.H. & Silver S. 1995. Ion efflux system involved in bacterial metal resistances. J. Ind. Microbiol. 14: 186–199.

    Article  PubMed  CAS  Google Scholar 

  • Occupational Safety and Health Administration (OSHA). 1992 U.S. Department of Labor: Occupational exposure to cadmium; final rules. Federal Register 57: 42102–42463.

    Google Scholar 

  • Olafson R.W., Mccubbin W.D. & Kay C.M. 1988. Primary-and secondary-structural analysis of a unique prokaryotic metallothionein from a Synechococcus sp. cyanobacterium. Biochem. J. 251: 691–699.

    PubMed  CAS  Google Scholar 

  • Pardo R., Herguedas M. & Barrado E. 2003. Biosorption of cadmium, copper, lead, and zinc by inactive biomass of Pseudomonas putida. Anal. Bioanal. Chem. 376: 26–32.

    PubMed  CAS  Google Scholar 

  • Perron K., Caille O., Rossier C., Delden C.V., Dumas J.L. & Kohler T. 2004. CzcR-CzcS, a two-component system involved in the heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J. Biol. Chem. 279: 8761–8768.

    Article  PubMed  CAS  Google Scholar 

  • Raskin I. & Ensley B.D. 2000. Phytoremediation of Toxic Metals. John Wiley & Sons, New York.

    Google Scholar 

  • Rohit M. & Sheela S. 1994. Uptake of zinc in Pseudomonas sp. strain UDG26. Appl. Environ. Microbiol. 60: 2367–2370.

    Google Scholar 

  • Sambrook J., Fritsh E.F. & Maniatis T. 1989. Molecular Cloning: A laboratory Manual. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Sobkowiak R. & Deckert J. 2004. The effect of cadmium on cell cycle control in suspension culture cells of soybean. Acta. Physiol. Plant. 26: 335–344.

    Article  CAS  Google Scholar 

  • Tynecka Z., Gos Z. & Zajac J. 1981. Energy dependent efflux of cadmium coded by a plasmid resistant determinant in Staphylococcus aureus. J. Bacteriol. 145: 305–312.

    Google Scholar 

  • Unaldi M.N., Korkmaz H., Ankan B. & Corel G. 2003. Plasmid-encoded heavy metal resistance in Pseudomonas sp. Bull. Environ. Contam. Toxicol. 71: 1145–1150.

    Article  PubMed  CAS  Google Scholar 

  • Vido K.A. 2001. Proteome analysis of cadmium response in Saccharomyces cerevisiae. J. Biol. Chem. 276: 8469–8474.

    Article  PubMed  CAS  Google Scholar 

  • Volesky B. 1990. Biosorption of Heavy Metals. CRC Press, Inc., Boston, USA, ISBN 0-84934917-6.

    Google Scholar 

  • Waisberg M., Joseph P., Hale B. & Beyersmann D. 2003. Molecular mechanism of cadmium carcinogenesis. Toxicol. 192: 95–117.

    Article  CAS  Google Scholar 

  • Wang C.L., Michels P.C., Dawson S.C., Kitisakkul S., Baross J.A., Keasling J.D. & Clark D.S. 1997. Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl. Environ. Microbiol. 63: 4075–4078.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindan Sadasivam Selvam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edward Raja, C., Sasikumar, S. & Selvam, G.S. Adaptive and cross resistance to cadmium (II) and zinc (II) by Pseudomonas aeruginosa BC15. Biologia 63, 461–465 (2008). https://doi.org/10.2478/s11756-008-0095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0095-y

Key words

Navigation