Skip to main content
Log in

Small heat shock protein responses in leaf tissues of wheat cultivars with different heat susceptibility

  • Full Paper
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The effect of heat stress on soluble proteins extracted from leaf tissues of bread (Triticum aestivum cv. Gönen-98, tolerant; cv. Cumhuriyet-75, susceptible; genome ABD) and durum (Triticum durum cv. Ege-88, tolerant; cv. Ankara-98, susceptible; genome AB) wheat cultivars differing in sensitivity to high temperature was examined by two-dimensional gel electrophoresis. At acclimation (37°C) and acclimation→high temperature (37°C→50°C) treatments compared to control (25°C), evaluation of gels revealed 31 proteins to be differentially expressed in first leaves as a result of heat stress in heat-susceptible and heat-tolerant cultivars of bread and durum wheats. All of the increased or decreased proteins in amount, newly synthesized and/or disappeared were in low-molecular-weight (LMW, 16.1–24.0 kDa) and generally acidic character (pI 4.8–6.9). The responses of the four cultivars were compared: Twenty-two of 31 proteins were detected as newly synthesized LMW heat shock proteins (LMW HSPs = small HSPs). The number of these sHSPs was different in cultivars which have the same genome. In addition, the number of the sHSPs in heat-tolerant cultivars was higher than in heat-susceptible cultivars. Some of the sHSPs were specific to cultivar. Most of the sHSPs synthesized at 37°C were also detected at 37°C→50°C treatment. It is suggested that sHSPs have special importance in two points: Firstly, sHSPs in cultivars showed abundance and diversity. Secondly, these proteins may play an important role in the acquiring of thermal tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blum H., Beier H. & Gross H.J. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8: 93–99.

    Article  CAS  Google Scholar 

  • Burke J.J. 1998. Characterization of acquired thermo-tolerance in soybean seedlings. Plant Physiol. Biochem. 36: 601–607.

    Article  CAS  Google Scholar 

  • Burke J.J., O’Mahony P.J. & Oliver M.J. 2000. Isolation of Arabidopsis mutants lacking components of acquired thermotolerance. Plant Physiol. 123: 575–587.

    Article  PubMed  CAS  Google Scholar 

  • Busch W., Wunderlich M. & Schöffl F. 2005. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J. 41: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Chakravarty S. & Varadarajan R. 2000. Elucidation of determinants of protein stability through genome sequence analysis. FEBS Lett. 470: 65–69.

    Article  PubMed  CAS  Google Scholar 

  • Damerval C., de Vienne D., Zivy M. & Thiellement H. 1986. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheatseedling proteins. Electrophoresis 7: 52–54.

    Article  CAS  Google Scholar 

  • DeRocher A.E., Helm K.W., Lauzon L.M. & Vierling E. 1991. Expression of a conserved family of cytoplasmic low molecular weight heat shock proteins during heat stress and recovery. Plant Physiol. 96: 1038–1046.

    PubMed  CAS  Google Scholar 

  • Ganesh C., Eswar N., Srivastava S., Ramakrishnan C. & Varadarajan R. 1999. Prediction of the maximal stability temperature of monomeric globular proteins solely from amino acid sequence. FEBS Lett. 454: 31–36.

    Article  PubMed  CAS  Google Scholar 

  • Giese K.C. & Vierling E. 2002. Changes in oligomerization are essential for the chaperone activity of a small heat shock protein in vivo and in vitro. J. Biol. Chem. 277: 46310–46318.

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser D.F., Harrington M.G., Hochstrasser A-C., Miller M.J. & Merril C.R. 1988. Methods for increasing the resolution of two-dimensional protein electrophoresis. Anal. Biochem. 173: 424–435.

    Article  PubMed  CAS  Google Scholar 

  • Hong S-W., Lee U. & Vierling E. 2003. Arabidopsis hot mutants define multiple functions required for acclimation to high temperature. Plant Physiol. 132: 757–767.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh M.H., Chen J.T., Jinn T.L., Chen Y.M. & Lin C.Y. 1992. A class of soybean low molecular weight heat shock proteins: immunological study and quantitation. Plant Physiol. 99: 1279–1284.

    PubMed  CAS  Google Scholar 

  • Knight C.A. & Ackerly D.D. 2001. Correlated evolution of chloroplast heat shock protein expression in closely related plant species. Am. J. Bot. 88: 411–418.

    Article  PubMed  CAS  Google Scholar 

  • Knight C.A. & Ackerly D.D. 2003. Small heat shock protein responses of a closely related pair of desert and coastal Encelia. Int. J. Plant Sci. 164: 53–60.

    Article  CAS  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  PubMed  CAS  Google Scholar 

  • Leone A., Piro G., Leucci M.R., Zacheo G. & Dalessandro G. 2000. Membrane-cell wall-associated heat shock proteins in two genotypes of barley seedlings. Plant Biosyst. 134: 171–178.

    Article  Google Scholar 

  • Liu J. & Shono M. 1999. Characterization of mitochondria-located small heat shock protein from tomato. Plant Cell Physiol. 40: 1297–1304.

    PubMed  CAS  Google Scholar 

  • Liu N-Y., Ko S-S., Yeh K-C. & Charng Y-Y. 2006. Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Sci. 170: 976–985.

    Article  CAS  Google Scholar 

  • Mansfield M.A. & Key J.L. 1987. Synthesis of the low molecular weight heat shock proteins in plants. Plant Physiol. 84: 1007–1017.

    Article  PubMed  CAS  Google Scholar 

  • Naqvi S.M.S., Özalp V.C., Öktem H.A. & Yücel M. 1994. Two-dimensional electrophoresis of proteins with a different approach to isoelectric focusing. Analyst 119: 1341–1344.

    Article  CAS  Google Scholar 

  • O’Connell M.A. 1994. Heat shock proteins and thermotolerance, pp. 163–183. In: Basra A.S. (ed), Stress-induced Gene Expression in Plants, Harwood, Chur.

  • O’Mahony P., Burke J.J. & Oliver M.J. 2000. Identification of acquired thermotolerance deficiency within ditelosomic series of ‘Chinese Spring’ wheat. Plant Physiol. Biochem. 38: 243–252.

    Article  CAS  Google Scholar 

  • Queitsch C., Hong S-W., Vierling E. & Lindquist S. 2000. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12: 479–492.

    Article  PubMed  CAS  Google Scholar 

  • Preczewski P.J., Heckathorn S.A., Downs C.A. & Coleman J.S. 2000. Photosynthetic thermotolerance is quantitatively and positively correlated with production of specific heat-shock proteins among nine genotypes of Lycopersicon (tomato). Photosynthetica 38: 127–134.

    Article  CAS  Google Scholar 

  • Ramagli L.S. & Rodriguez L.V. 1985. Quantitation of microgram amounts of protein in two-dimensional polyacrylamide gel electrophoresis sample buffer. Electrophoresis 6: 559–563.

    Article  CAS  Google Scholar 

  • Rizhsky L., Liang H., Shuman J., Shulaev V., Devletova S. & Mittler R. 2004. When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134: 1683–1696.

    Article  PubMed  CAS  Google Scholar 

  • Sun W., Montagu M.V. & Verbruggen N. 2002. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta 1577: 1–9.

    PubMed  CAS  Google Scholar 

  • Süle A., Vanrobaeys F., Hajos G.Y., van Beeumen J. & Devreese B. 2004. Proteomic analysis of small heat shock protein isoforms in barley shoots. Phytochem. 65: 1853–1863.

    Article  CAS  Google Scholar 

  • Thompson M.J. & Eisenberg D. 1999. Transproteomic evidence of a loopdeletion mechanism for enhancing protein thermostability. J. Mol. Biol. 290: 595–604.

    Article  PubMed  CAS  Google Scholar 

  • Vierling E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579–620.

    Article  CAS  Google Scholar 

  • Wang W., Vinocur B., Shoseyov O. & Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244–252.

    Article  PubMed  CAS  Google Scholar 

  • Waters E.R., Lee G.J. & Vierling E. 1996. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47: 325–338.

    Article  CAS  Google Scholar 

  • Yildiz M. & Terzi H. 2008. Evaluation of acquired thermotolerance in wheat (Triticum aestivum and T. durum) cultivars grown in Turkey. Pak. J. Bot. 40: 317–327.

    CAS  Google Scholar 

  • Yildiz M. & Terzioglu S. 2006. Heat shock of cultivated and wild wheat during early seedling stage: growth, cell viability and heat shock proteins. Acta Biol. Hung. 57: 231–246.

    Article  Google Scholar 

  • Zivy M. & de Vienne D. 2000. Proteomics: a link between genomics, genetics and physiology. Plant Mol. Biol. 44: 575–580.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Yildiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildiz, M., Terzi, H. Small heat shock protein responses in leaf tissues of wheat cultivars with different heat susceptibility. Biologia 63, 521–525 (2008). https://doi.org/10.2478/s11756-008-0089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0089-9

Key words

Navigation