Skip to main content
Log in

Long-term within pond variation of egg deposition sites in the agile frog, Rana dalmatina

  • Full Paper
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

This study presents long-term fluctuation, within pond distribution and mortality of egg masses in a population of Rana dalmatina reproducing in a permanent semi-natural pond in Romania. The average number of egg masses per year was 410 (SD = 114.56, min.-max. = 265–581). The mean spawning duration (days) was 26.72 (SD = 5.53). The egg mass distribution was not constant during the years. The long-term change in the distribution of egg masses can be related to changes in the reed cover (pond variable) and landscape structure, i.e. the presence of the forest and a pasture between the pond and the forest. There was a reduction in the number of dead egg masses during the study period. We suggest that the maintenance of the connectivity with the forest and the variable amount of reed assure the main aquatic and terrestrial habitats for the agile frogs. This will allow agile frogs to shift breeding habitats in this area according to their ecological needs and find safe terrestrial habitats for summering and wintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ficetola G.F., Valota M. & de Bernardi F. 2006. Temporal variability of spawning site selection in the frog Rana dalmatina: consequence for habitat management. Anim. Biodivers. Conserv. 29: 157–163.

    Google Scholar 

  • Gagne S.A. & Fahrig L. 2007. Effect of landscape context on anuran communities in breeding ponds in the National Capital Region, Canada. Landscape Ecology 22: 205–215.

    Article  Google Scholar 

  • Gollmann G., Baumgartner C., Gollmann B. & Waringer-Löschenkohl A. 1999. Breeding phenology of syntopic frog populations, Rana dalmatina and R. temporaria in suburban Vienna. Verh. Gesell. Ökol. 29: 357–361.

    Google Scholar 

  • Gollmann G., Gollmann B., Baumgartner C. & Waringer-Löschenkohl A. 2002. Spawning site shifts by Rana dalmatina and R. temporaria in response to habitat change. Biota 3(1–2): 35–42.

    Google Scholar 

  • Hairston N.G. 1996. Predation and competition in salamander communities, pp. 161–189. In: Cody M.L. & Smallwood J.A. (ed.), Long Term Study of Vertebrate Communities, Academic, San Diego CA.

    Google Scholar 

  • Hartel T. 2003. The breeding biology of Rana dalmatina in Târnava-Mare Valley, Romania. Russ. J. Herpetol. 10: 169–175.

    Google Scholar 

  • Hartel T. 2004. The long-term trend and the distribution of amphibian populations in a seminatural pond in the middle section of the Târnava-Mare Valley (Romania). Biota 4: 25–36.

    Google Scholar 

  • Hartel T. & Demeter L. 2005. The breeding migration and population characteristics of a common toad (Bufo bufo) population in Târnava Valley, Romania. Transylv. Rev. Ecol. Syst. Res. 2: 145–154.

    Google Scholar 

  • Hartel T., Nemes S., Cogălniceanu D., Öllerer K., Schweiger O., Moga C.I. & Demeter L. 2007. The effect of fish and aquatic habitat complexity on amphibians. Hydrobiologia 583: 173–182.

    Article  Google Scholar 

  • Hartel T., Nemes S., Demeter L. & Öllerer K. 2008. Pond and landscape characteristics: which are more important for the common toad? A case study from central Romania. Appl. Herpetol. 5: 1–12.

    Article  Google Scholar 

  • Hopey M.E. & Petranka J.W. 1994. Restriction of wood frogs to fish-free habitats: How important is adult choice? Copeia 4: 1023–1025.

    Article  Google Scholar 

  • Loman J. & Anderson G. 1997. Monitoring brown frogs Rana arvalis and Rana temporaria in 120 south Swedish ponds 1989–2005. Mixed trends in different habitats. Biol. Conserv. 135: 46–56.

    Article  Google Scholar 

  • Mazerolle M.J. & Desrochers A. 2005. Landscape resistance to frog movements. Can. J. Zool. 83: 455–464.

    Article  Google Scholar 

  • Méhely L. 1903. A békák ivadékgondozása. Természettudományi Közlöny 25: 425–457.

    Google Scholar 

  • Meyer A. H., Schmidt B. R. & Grossenbacher K. 1998. Analysis of three amphibian populations with quarter century long time series. Proc. R. Soc. Lond. 265: 523–528.

    Article  CAS  Google Scholar 

  • Pechmann J.H.K., Scott D.E., Semlitsch R.D., Caldwell J.P., Vitt L.J. & Gibbons J.W. 1991. Declining amphibian populations: the problem of separating human impacts from natural fluctuations. Science 253: 892–895.

    Article  PubMed  Google Scholar 

  • Petranka J.W., Smith C.K. & Scott A.F. 2004. Identifying the minimal demographic unit for monitoring pond-breeding amphibians. Ecol. Appl. 14: 1065–1078.

    Article  Google Scholar 

  • Reading C.J. 2007. Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia 151: 125–131.

    Article  PubMed  CAS  Google Scholar 

  • Scott D.E. 1990. Effects of larval density in Ambystoma opacum: an experiment in large scale field enclosures. Ecology 71: 296–306.

    Article  Google Scholar 

  • Scott D.E. 1994. The effect of larval density on adult demographic traits in Ambystoma opacum. Ecology 75: 1383–1396.

    Article  Google Scholar 

  • Scribner K.T., Arntzen J.W., Burke T., Cruddace N. & Oldham R.S. 2001. Environmental correlates of toad abundance and population genetic diversity. Biol. Conserv. 98: 201–210.

    Article  Google Scholar 

  • Semlitsch R.D., Scott D.E., Pechmann J.H.K. & Gibbons J.W. 1996. Structure and dynamics of an amphibian community: evidence from 16 year study of a natural pond, pp. 217–248. In: Cody M.L. & Smallwood J.A. (eds), Long Term Study of Vertebrate Communities, Academic, San Diego CA.

    Google Scholar 

  • Sjögren-Gulve P. 1991. Extinction and isolation gradients in metapopulations: the case of the pool frog (Rana lessonae). Biol. J. Linn. Soc. 42: 135–147.

    Article  Google Scholar 

  • Sofianidou T.S. & Kyriakopoulou-Sklavounou P. 1983. Studies on the biology of the frog, Rana dalmatina, Bonap. during the breeding season in Greece. Amphibia-Reptilia 4: 125–136.

    Article  Google Scholar 

  • Strömberg G. 1988. A study of the jumping frog (Rana dalmatina) in Blekinge, Sweden, 1982–1988. Memoranda Soc. Fauna Flora Fenn. 64: 107–109.

    Google Scholar 

  • Teplitsky C., Plénet S. & Joly P. 2003. Tadpoles’ response to risk of fish introduction. Oecologia 134: 270–277.

    PubMed  CAS  Google Scholar 

  • Van Buskirk J. 2005. Local and landscape influence on amphibian occurrence and abundance. Ecology 86: 1936–1947.

    Article  Google Scholar 

  • Viertel B. 1999. Salt tolerance of Rana temporaria: Spawning site selection and survival during embryonic development. (Amphibia, Anura). Amphibia-Reptilia 20: 161–171.

    Google Scholar 

  • Waringer-Löschenkohl A. 1991. Breeding ecology of Rana dalmatina in Lower Austria: a 7-years study. Alytes 9: 121–134.

    Google Scholar 

  • Wells K. 1977. The social behaviour of anuran amphibians. Anim. Behav. 25: 666–693.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibor Hartel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartel, T. Long-term within pond variation of egg deposition sites in the agile frog, Rana dalmatina . Biologia 63, 439–443 (2008). https://doi.org/10.2478/s11756-008-0060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0060-9

Key words

Navigation