Skip to main content
Log in

Determination of antioxidant activity of various extracts of Parmelia saxatilis

  • Full Paper
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The work was conducted with the purpose to evaluate antioxidant activity of Parmelia saxatilis (PS) by different analytical methods. Water and methanol were used as solvents and antioxidative effects were measured by a ferric thiocyanate method (FTC) and thiobarbituric acid test (TBA). The antioxidant activity increased with the increasing amount of extracts (from 50 to 250 µg) added to linoleic acid emulsion. The methanol extract of PS exhibited high antioxidative activity that was not significantly (P < 0.05) different from α-tocopherol, while aqueous extracts of PS showed low antioxidative activity. Similar trends of antioxidant activity were observed using either the FTC or TBA methods. Antioxidant activity, reducing power, free radical scavenging (DPPH·), superoxide anion radical scavenging, metal chelating and hydrogen peroxide scavenging activities of PS extracts showed dose dependence and increased with concentration of PS extract. The results obtained in the present study indicate that the PS might be a potential source of natural antioxidant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andlauer W. & Fürst P. 1998. Antioxidative power of phytochemicals with special reference to cereals. Cereal Foods World 43: 356–359.

    CAS  Google Scholar 

  • Bayir Y., Odabasoglu F., Cakir A., Aslan A., Suleyman H., Halici M. & Kazaz C. 2006. The inhibition of gastric mucosal lesion, oxidative stress and neutrophil-infiltration in rats by the lichen constituent diffractaic acid. Phytomed. 13: 584–590.

    Article  CAS  Google Scholar 

  • Baytop T. 1999. Therapy with Medicinal Plants in Turkey (Past and Present). Istanbul University, Istanbul, 233 pp.

    Google Scholar 

  • Behera B.C., Verma N., Sonone A. & Makhija U. 2006. Determination of antioxidative potential of lichen Usnea ghattensis in vitro. Lebensmit. Wissen. Technol. 39: 80–85.

    CAS  Google Scholar 

  • Cos P., Ying L.Y., Calomme, M., Hu J.H., Cimanga K., Van Poel B., Pieters L., Vlietinck A.J. & Berghe D.V. 1998. Structure activity relationships and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. J. Natur. Prod. 61: 71–76.

    Article  CAS  Google Scholar 

  • Cotelle N., Bemier J.L., Catteau J.P., Pommery J., Wallet J.C. & Gaydou E.M. 1996. Antioxidant properties of hydroxyl-flavones. Free Rad. Biol. Med. 20: 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Dinis T.C.P., Madeira V.M.C. & Almeida L.M. 1994. Action of phenolic derivatives (acetaminophen, salicylate and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation as peroxyl radical scavenging effects. Chem. Pharm. Bull. 36: 2090–2097.

    Google Scholar 

  • Diplock A.T. 1997. Will the ‘good fairies’ please proves to us that vitamin E lessens human degenerative of disease? Free Rad. Res. 27: 511–532.

    Article  CAS  Google Scholar 

  • Duh P.D., Tu Y.Y. & Yen G.C. 1999. Antioxidant activity of aqueous extract of harnjyur (Chyrsanthemum morifolium Ramat). Lebensm. Wissensch. Technol. 32: 269–277

    Article  CAS  Google Scholar 

  • Germano M.P., Pasquale D.E.R., D’Angelo V., Catania S., Silvaria V. & Costa C. 2002. Evaluation of extracts and isolated fraction from Capparis spinosa L. Buds as an antioxidant source. J. Agri. Food Chem. 50: 1168–1171.

    Article  CAS  Google Scholar 

  • Gülçin I., Oktay M., Küfrevioğlu Ö.I. & Aslan A. 2002. Determination of antioxidant activity of lichen Cetraria islandica (L.) Ach. J. Ethnopharmacol. 79: 325–329.

    Article  Google Scholar 

  • Grice H.C. 1986. Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol. 24: 1127–1130.

    Article  Google Scholar 

  • Haber & Weiss 1934. The catalytic decomposition of hydrogen peroxide by iron salts, Proc. Royal Soc. London 147: 332–351.

    Article  Google Scholar 

  • Hall C.A. & Cuppett S.L. 1997. Structure-activities of natural antioxidants, pp. 141–170). In: Auroma O.I. & Cuppett S.L. (eds), Antioxidant methodology in vivo and in vitro concepts. AOCS Press, Champaign, IL.

    Google Scholar 

  • Halliwell B. 1991. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Amer. J. Med. 91(Suppl. 3C): 14–22.

    Article  Google Scholar 

  • Hana D., Matsumarua K., Rettorib D. & Kaplowitza N. 2004. Usnic acid-induced necrosis of cultured mouse hepatocytes: inhibition of mitochondrial function and oxidative stress. Biochem. Pharmacol. 67: 439–451.

    Article  CAS  Google Scholar 

  • Hatano T., Edamatsu R., Hiramatsu M., Moti A., Fujita Y., Yasuhara T., Yoshida T. & Okuda T. 1989. Effects of tannins and related polyphenols on superoxide anion radical, and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem. Pharm. Bull. 37: 2016–2021.

    CAS  Google Scholar 

  • Hidalgo M.E., Fernandez E., Quilhot W. & Lissi E. 1994. Antioxidant activity of depsides and depsidones. Phytochem. 37: 1585–1587.

    Article  CAS  Google Scholar 

  • Ingolfsdottir K., Chung G.A., Skulason V.G., Gissurarson S.R. & Vilhelmsdottir M. 1999. Antimycobacterial activity of lichen metabolites in vitro. Eur. J. Pharm. Sci. 62: 141–144.

    Google Scholar 

  • Jayaprkasha G.K. & Jaganmohan Rao L. 2000. Phenolic constituents from the lichen ‘Parmotrema stuppeum’ hale and their antioxidant activity. Zeitsch. für Naturf. 55: 1018–1022.

    Google Scholar 

  • Kikizaki H & Nakatani N 1993. Antioxidant effects of some ginger constituents. J. Food Sci. 58: 1407–1410.

    Article  Google Scholar 

  • Kumar K.C. & Muller K. 1999a. Lichen metabolites. 2. Antiproliferative and cytotoxic activity of gyrophic, usnic, and diffractaic acid in human keratinocyte growth. J. Nat. Prod. 62: 821–823

    Article  PubMed  CAS  Google Scholar 

  • Kumar K.C. & Muller K. 1999b. Lichen metabolites. 1. Inhibitory Inhibitory action against leucotriene B4 biosynthesis by a non-redox mechanism. J. Nat. Prod. 62: 817–820.

    Article  PubMed  CAS  Google Scholar 

  • Laranjinha J., Vieira O., Madeira V. & Almeida L. 1995. Two related phenolic antioxidants with opposite effects on vitamin E content in low density lipoproteins oxidized by ferrylmyoglobin: consumption versus regeneration. Arch. Biochem. Biophys. 323: 373–381.

    Article  PubMed  CAS  Google Scholar 

  • Matthaus B. 2002. Antioxidant activity of extracts obtained from residues of different oilseeds. J. Agric. Food Chem. 50: 3444–3452.

    Article  PubMed  CAS  Google Scholar 

  • Meir S., Kanner J., Akiri B. & Hadas S.P. 1995. Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J. Agr. Food Chem. 43: 1813–1817.

    Article  CAS  Google Scholar 

  • Mitsuda H., Yuasumoto K. & Iwami K. 1966. Antioxidation action of indole compounds during the autoxidation of linoleic acid. Eiyo to Shokuryo 19: 210–214.

    CAS  Google Scholar 

  • Modenesi P., Piana M. & Pinna D. 1998. Surface features in Parmelia sulcata (Lichenes) thalli growing in shaded or exposed habitat. Nova Hedvigia 66: 535–547.

    Google Scholar 

  • Monnet F., Bordas F., Deluchat V. & Baudu M. 2006. Toxicity of copper excess on the lichen Dermatocarpon luridum: Antioxidant enzyme activities. Chemosphere 65: 1806–1813.

    Article  PubMed  CAS  Google Scholar 

  • Moure A., Franco D., Sineiro J., Dominguez H., Numez M.J. & Lema J.M. 2000. Evaluation of extracts from Guvuina avellana hulls as antioxidants. J. Agric. Food Chem. 48: 3890–3897.

    Article  PubMed  CAS  Google Scholar 

  • Nash T.H. 1996. Lichen biology. Cambridge University Press, Great Britain, 289 pp.

    Google Scholar 

  • Nishimiki M., Rao N.A. & Yagi K. 1972. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophy. Res. Com. 46: 849–853.

    Article  Google Scholar 

  • Odabasoglu F., Aslan A., Cakir A., Suleyman H., Karagoz Y., Halici M. & Bayir Y. 2004. Comparision of antioxidant activity and phenolis content of three lichen species. Phytother. Res. 18: 938–941.

    Article  PubMed  Google Scholar 

  • Soktay M., Gulcin I. & Kufrevioglu O.I. 2003. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Food Sci. Technol. 36: 263–271.

    Google Scholar 

  • Oyaizu M. 1986. Studies on products of browing reaction: Antioxidative activity of product of browing reaction preapared from glucosamine. Jap. J. Nurtion. 44: 307–315.

    CAS  Google Scholar 

  • Ruch R.J., Cheng S.J. & Klaunig J.E. 1989. Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 10: 1003–1008.

    Article  PubMed  CAS  Google Scholar 

  • Slinkard K. & Singleton V.L. 1977. Total phenol analyses: Automation and comparison with manual methods. Amer. J. Enol. Viticul. 28: 49–55.

    CAS  Google Scholar 

  • Tanaka M., Kuei C.W., Nagashima Y. & Taguchi T. 1998. Application of antioxidative maillrad reaction products from histidine and glucose to sardine products. Nippon Suisan Gakkaishi 54: 1409–1414.

    Google Scholar 

  • Van Acker S.A.B.E., Van Balen G. P., Van den Berg D. J., Bast A. & Van der Vijgh S.A.B.E. 1998. Influence of iron chelation on the antioxidant activity of flavonoids. Biochem. Pharmacol. 56: 935–943.

    Article  PubMed  Google Scholar 

  • Wichi H.P. 1988. Enhanced tumor development by butylated hydroxyanisol (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol. 26: 717–723.

    Article  Google Scholar 

  • Wickens A.P. 2001. Aging and the free radical theory, Respirat. Physiol. 128: 2001, 379–391.

    CAS  Google Scholar 

  • Ye X.Y., Wang H.X., Liu F. & Nig T.B. 2000. Ribonuclease, cell-free translation-inhibitory and superoxide scavenging activities of the iron-binding protein lactoferrin from bovine mill. Int. J. Biochem. Cell Biol. 32: 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Yilidirim A., Oktay M. & Bilaloglu V. 2001. The antioxidant activity of the leaves of Cydonia vulgaris. Turk. J. Med. Sci. 31: 23–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tevfik Özen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özen, T., Kinalioğlu, K. Determination of antioxidant activity of various extracts of Parmelia saxatilis . Biologia 63, 211–216 (2008). https://doi.org/10.2478/s11756-008-0047-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0047-6

Key words

Navigation