Skip to main content
Log in

The role of gene polymorphisms in the pathogenesis of chronic obstructive pulmonary disease

  • Review
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. Irreversible airflow limitation, both progressive and associated with an inflammatory response of the lungs to noxious particles or gases, is a hallmark of the disease. Cigarette smoking is the most important environmental risk factor for COPD, nevertheless, only approximately 20–30% of smokers develop symptomatic disease. Epidemiological studies, case-control studies in relatives of patients with COPD, and twin studies suggest that COPD is a genetically complex disease with environmental factors and many involved genes interacting together. Two major strategies have been employed to identify the genes and the polymorphisms that likely contribute to the development of complex diseases: association studies and linkage analyses. Biologically plausible pathogenetic mechanisms are prerequisites to focus the search for genes of known function in association studies. Protease-antiprotease imbalance, generation of oxidative stress, and chronic inflammation are recognized as the principal mechanisms leading to irreversible airflow obstruction and parenchymal destruction in the lung. Therefore, genes which have been implicated in the pathogenesis of COPD are involved in antiproteolysis, antioxidant barrier and metabolism of xenobiotic substances, inflammatory response to cigarette smoke, airway hyperresponsiveness, and pulmonary vascular remodelling. Significant associations with COPD-related phenotypes have been reported for polymorphisms in genes coding for matrix metalloproteinases, microsomal epoxide hydrolase, glutathione-S-transferases, heme oxygenase, tumor necrosis factor, interleukines 1, 8, and 13, vitamin D-binding protein and β-2-adrenergic receptor (ADRB2), whereas adequately powered replication studies failed to confirm most of the previously observed associations. Genome-wide linkage analyses provide us with a novel tool to identify the general locations of COPD susceptibility genes, and should be followed by association analyses of positional candidate genes from COPD pathophysiology, positional candidate genes selected from gene expression studies, or dense single nucleotide polymorphism panels across regions of linkage. Haplotype analyses of genes with multiple polymorphic sites in linkage disequilibrium, such as the ADRB2 gene, provide another promising field that has yet to be explored in patients with COPD. In the present article we review the current knowledge about gene polymorphisms that have been recently linked to the risk of developing COPD and/or may account for variations in the disease course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACE:

angiotensin-converting enzyme

ADRB2:

β-2-adrenergic receptor

COPD:

chronic obstructive pulmonary disease

CYP1A1:

cytochrome P450 1A1

FEV1 :

forced exspiratory volume in the first second

GST:

glutathione S-transferase

HMOX-1:

heme oxygenase-1

5HTTLPR:

serotonin transporter gene-linked polymorphic region

IL:

inter-leukin

IL8R:

CXCR, IL-8 receptor

IL1RN:

IL-1 receptor antagonist

mEPHX:

microsomal epoxide hydrolase

MMP:

matrix metalloproteinase

SERT:

serotonin transporter

SFTB:

surfactant protein B

SNP:

single nucleotide polymorphism

TGFβ1:

transforming growth factor-β1

TIMP:

tissue inhibitor of metalloproteinases

TNF:

tumor necrosis factor

TNFR:

tumor necrosis factor receptor

VDBP:

vitamin D-binding protein

References

  • Barbera J.A., Peinado V.I. & Santos S. 2003. Pulmonary hypertension in chronic obstructive pulmonary disease. Eur. Respir. J. 21: 892–905.

    Article  PubMed  CAS  Google Scholar 

  • Beck G.J., Doyle C.A. & Schachter E.N. 1981. Smoking and lung function. Am. Rev. Respir. Dis. 123: 149–155.

    PubMed  CAS  Google Scholar 

  • Blobe G.C., Schiemann W.P. & Lodish H.F. 2000. Role of transforming growth factor beta in human disease. N. Engl. J. Med. 342: 1350–1358.

    Article  PubMed  CAS  Google Scholar 

  • Broekhuizen R., Grimble R.F., Howell W.M., Shale D.J., Creutzberg E.C., Wouters E.F. & Schols A.M. 2005. Pulmonary cachexia, systemic inflammatory profile, and the interleukin 1β-511 single nucleotide polymorphism. Am. J. Clin. Nutr. 82: 1059–1064.

    PubMed  CAS  Google Scholar 

  • Brogger J., Steen V.M., Eiken H.G., Guisvik A. & Bakke P. 2006. Genetic association between COPD and polymorphisms in TNF, ADRB2 and EPHX1. Eur. Respir. J. 27: 682–688.

    Article  PubMed  CAS  Google Scholar 

  • Cantlay A.M., Lamb D., Gillooly M., Norrman J., Morrison D., Smith C.A.D. & Harrison D.J. 1995. Association between the CYP1A1 gene polymorphism and susceptibility to emphysema and lung cancer. Clin. Mol. Pathol. 48: 210–214.

    Article  Google Scholar 

  • Celedon J.C., Lange C., Raby B.A., Litonjua A.A., Palmer L.J., DeMeo D.L., Reilly J.J., Kwiatkowski D.J., Chapman H.A., Laird N., Sylvia J.S., Hernandez M., Speizer F.E., Weiss S.T. & Silverman E.K. 2004. The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum. Mol. Genet. 13: 1649–1656.

    Article  PubMed  CAS  Google Scholar 

  • Celli B.R., MacNee W. Agusti A., Anzueto A., Berg B., Buist A.S., Calverley P.M.A., Chavannes N., Dillard T., Fahy B., Fein A., Heffner J., Lareau S., Meek P., Martinez F., Mc-Nicholas W., Muris J., Austegard E., Pauwels R., Rennard S., Rossi A., Siafakas N., Tiep B., Vestbo J., Wouters E. & ZuWallack R. 2004. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur. Respir. J. 23: 932–946.

    PubMed  CAS  Google Scholar 

  • Chapman H.A. & Shi G.P. 2000. Protease injury in the development of COPD. Chest 117: 295S–298S.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y., Horne S.L., Rennie D.C. & Dosman J.A. 1996. Segregation analysis of two lung function indices in a random sample of young families: The Humboldt family study. Genet. Epidemiol. 13: 35–47.

    Article  PubMed  Google Scholar 

  • Cheng S.L., Yu C.J., Chen C.J. & Yang P.C. 2004. Genetic polymorphism of epoxide hydrolase and glutathione S-transferase in chronic obstructive pulmonary disease. Eur. Respir. J. 23: 1–7.

    Article  Google Scholar 

  • Chierakul N., Wongwisutikul P., Vejbaesya S. & Chotvilaiwan K. 2005. Tumor necrosis factor-alpha gene promoter polymorphism is not associated with smoking-related COPD in Thailand. Respirology 10: 36–39.

    Article  PubMed  Google Scholar 

  • Churg A., Wang R.D., Tai H., Wang X., Xie C., Dai J., Shapiro S.D. & Wright J.L. 2003. Macrophage metalloelastase mediates acute cigarette smoke-induced inflammation via tumor necrosis factor-alpha release. Am. J. Respir. Crit. Care Med. 167: 1083–1089.

    Article  PubMed  Google Scholar 

  • Cookson W. 2006. Genetics and genomics of chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 3: 473–477.

    Article  PubMed  CAS  Google Scholar 

  • Cosma G., Crofts F., Taioli E., Toniolo P. & Garte S. 1993. Relationship between genotype and function of the human CYP1A1 gene. J. Toxicol. Environ. Health 40: 309–316.

    Article  PubMed  CAS  Google Scholar 

  • Danser A.H., Schalekamp M.A., Bax W.A., Van den Brink A.M., Saxena M., Riegger G.A. & Schunker H. 1995. Angiotensin-converting enzyme in the human heart. Effect of deletion/insertion polymorphism. Circulation 15: 1387–1388.

    Google Scholar 

  • DeMeo D.L., Celedon J.C., Lange C., Reilly J., Chapman H., Sylvia J.S., Speizer F.E., Weiss S. & Silverman E.K. 2004a. Genome-wide linkage of forced mid-expiratory flow in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 170: 1294–1301.

    Article  PubMed  Google Scholar 

  • DeMeo D.L., Hersh C.P., Hoffman E.A., Litonjua A.A., Lazarus R., Sparrow D., Benditt J.O., Criner G., Make B., Martinez F.J., Scanlon P.D., Sciurba F.C., Utz J.P., Reilly J.J. & Silverman E.K. 2007. Genetic determinants of emphysema distribution in the National Emphysema Treatment Trial. Am. J. Respir. Crit. Care Med. 176: 42–48.

    Article  PubMed  CAS  Google Scholar 

  • DeMeo D.L., Lange C., Celedon J., Chapman H., Reilly J., Speizer F.E., Weiss S. & Silverman E.K. 2004b. Association analysis of candidate genes SNPs on chromosomes 2 and 12 in the Boston Early-Onset COPD Study. Am. J. Respir. Crit. Care Med. 169: A837.

    Google Scholar 

  • Drysdale C.M., McGraw D.W., Stack C.B., Stephens J.C., Judson R.S., Nandabalan K., Arnold K., Ruano G. & Liggett S.B. 2000. Complex promoter and coding region beta 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc. Natl. Acad. Sci. USA 97: 10483–10488.

    Article  PubMed  CAS  Google Scholar 

  • Eddahibi S., Chaouat A., Morrell N., Fadel E., Fuhrman C., Bugnet, A.S., Dartevelle P., Housset B., Hamon M., Weitzenblum E. & Adnot S. 2003. Polymorphism of the serotonin transporter gene and pulmonary hypertension in chronic obstructive pulmonary disease. Circulation 108: 1839–1844.

    Article  PubMed  CAS  Google Scholar 

  • Eddahibi S., Hanoun N., Lanfumey L., Lesch K.P., Raffestin B., Hamon M. & Adnot S. 2000. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J. Clin. Invest. 105: 1555–1562.

    Article  PubMed  CAS  Google Scholar 

  • Eddahibi S., Humbert M., Fadel E., Raffestin B., Darmon M., Capron F., Simonneau G., Dartevelle P., Hamon M. & Adnot S. 2001. Serotonin transporter overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J. Clin. Invest. 108: 1141–1150.

    Article  PubMed  CAS  Google Scholar 

  • Ferrarotti I., Zorzetto M., Beccaria M., Gile L.S., Porta R., Ambrosino N., Pignatti P.F., Cerveri I., Pozzi E. & Luisetti M. 2003. Tumour necrosis factor family genes in a phenotype of COPD associated with emphysema. Eur. Respir. J. 21: 444–449.

    PubMed  CAS  Google Scholar 

  • Gaspar P., Moreira J., Kvitko K., Torres M., Moreira A. & Weimer T. 2004. CYP1A1, CYP2E1, GSTM1, GSTT1, GSTP1, and TP53 polymorphisms: do they indicate susceptibility to chronic obstructive pulmonary disease and non-small-cell lung cancer? Genet. Mol. Biol. 27: 133–138.

    Article  CAS  Google Scholar 

  • Gelboin H.V. 1980. Benzo[α]pyrene metabolism, activation and carcinogenesis: role and regulation of mixed-function oxidases and related enazymes. Physiol. Rev. 60: 1107–1166.

    PubMed  CAS  Google Scholar 

  • Givelber R.J., Couropmitree N.N., Gottlieb D.J., Evans J.C., Levy D., Myers R.H. & O’Connor G.T. 1998. Segregation analysis of pulmonary function among families in Framingham Study. Am. J. Respir. Crit. Care Med. 157: 1445–51.

    PubMed  CAS  Google Scholar 

  • Guenegou A., Leynaert B., Benessiano J., Pin I., Demoly P., Neukirch F., Boczkowski J. & Aubier M. 2006. Association of lung function decline with the heme oxygenase-1 gene promoter microsatellite polymorphism in a general population sample. Results from the European Community Respiratory Health survey (ECRHS), France. J. Med. Genet. 43: e43.

    Article  CAS  Google Scholar 

  • Guengerich F.P., Thier R., Persmark M., Taylor J.B., Pemble S.E. & Ketterer B. 1995. Conjugation of carcinogens by theta class glutathione S-transferases: mechanisms and relevance to variations in human risk. Pharmacogenetics 5: 103–107.

    Article  Google Scholar 

  • Harrison D.J., Cantlay A.M., Lamb D. & Smith C.S. 1997. Frequency of gluthatione S-transferase M1 deletion in smokers with emphysema and lung cancer. Hum. Exp. Toxicol. 16: 356–360.

    PubMed  CAS  Google Scholar 

  • Hassett C., Aicher L., Sidhu J.S. & Omiecinski C.J. 1994. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum. Mol. Genet. 3: 421–428.

    Article  PubMed  CAS  Google Scholar 

  • Hautamaki R.D., Kobayashi D.K., Senior R.M. & Shapiro S.D. 1997. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277: 2002–2004.

    Article  PubMed  CAS  Google Scholar 

  • Hayes J.D. & Strange R.C. 2000. Gluthatione S-transferase polymorphisms and their biological consequences. Pharmacology 61: 154–166.

    Article  PubMed  CAS  Google Scholar 

  • He J.Q., Ruan J., Connett J.E., Anthonisen N.R., Paré P.D. & Sandford A.J. 2002. Antioxidant gene polymorphisms and susceptibility to a rapid decline in lung function in smokers. Am. J. Respir. Crit. Care Med. 166: 323–328.

    Article  PubMed  Google Scholar 

  • Hegab A.E., Sakamoto T., Saitoh W., Massoud H.H., Massoud H.M., Hassanein K.M. & Sekizawa K. 2004. Polymorphisms of IL4, IL13, and ADRB2 genes in COPD. Chest 126: 1832–1839.

    Article  PubMed  CAS  Google Scholar 

  • Hegab A.E., Sakamoto T., Saitoh W., Nomura A., Ishii Y., Morishima Y., Iizuka T., Kiwamoto T., Matsuno Y., Massoud H.H., Massoud H.M., Hassanein K.M. & Sekizawa K. 2005a. Polymorphisms of TNF-α, IL-1-β and IL-1RN genes in chronic obstructive pulmonary disease. Biochem. Biophys. Res. Commun. 329: 1246–1252.

    Article  PubMed  CAS  Google Scholar 

  • Hegab A.E., Sakamoto T., Uchida Y., Nomura A., Ishii Y., Morishima Y., Mochizuki M., Kimura T., Saitoh W., Kiwamoto T., Iizuka T., Massoud H.H., Massoud H.M., Hassanein K.M. & Sekizawa K. 2005b. Association analysis of tissue inhibitor of metalloproteinase-2 gene polymorphisms with COPD in Egyptians. Respir. Med. 99: 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Hersh C.P., Demeo D.L., Lange C., Litonjua A.A., Reilly J.J., Kwiatkowski D., Laird N., Sylvia J.S., Sparrow D., Speizer F.E., Weiss S.T. & Silverman E.K. 2005. Attempted replication of reported chronic obstructive pulmonary disease candidate gene associations. Am. J. Respir. Cell. Mol. Biol. 33: 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Hersh C.P., DeMeo D.L., Lazarus R., Celedon J.C., Raby B.A., Benditt J.O., Criner G., Make B., Martinez F.J., Scanlon P.D., Sciurba F.C., Utz J.P., Reilly J.J. & Silverman E.K. 2006a. Genetic association analysis of functional impairment in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 173: 977–984.

    Article  PubMed  CAS  Google Scholar 

  • Hersh C.P., DeMeo D.L., Raby B.A., Litonjua A.A., Sylvia J.S., Sparrow D., Reilly J.J. & Silverman E.K. 2006b. Genetic linkage and association analysis of COPD-related traits on chromosome 8p. COPD 3: 189–194.

    Article  PubMed  Google Scholar 

  • Higham M.A., Pride N.B., Alikhan A. & Morrell N.W. 2000. Tumour necrosis factor-α gene promoter polymorphism in chronic obstructive pulmonary disease. Eur. Respir. J. 15: 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Hirano K., Sakamoto T., Uchida Y., Morishima Y., Masuyama K., Ishii Y., Nomura A., Ohtsuka M. & Sekizawa K. 2001. Tissue inhibitor of metalloproteinases-2 gene polymorphisms in chronic obstructive disease. Eur. Respir. J. 18: 748–752.

    Article  PubMed  CAS  Google Scholar 

  • Hirschhorn J.N. & Altshuler D. 2002. Once and again-issues surrounding replication in genetic association studies. J. Clin. Endocrinol. Metab. 87: 4438–4441.

    Article  PubMed  CAS  Google Scholar 

  • Ho L.I., Harn H.J., Chen C.H.J. & Tsai N.M. 2001. Polymorphism of the β2-adrenoreceptor in COPD in Chinese subjects. Chest 120: 1493–1499.

    Article  PubMed  CAS  Google Scholar 

  • Horne S.L., Cockcroft D.W. & Dosman J.A. 1990. Possible protective effect against chronic obstructive airways disease by the GC 2 allele. Hum. Hered. 40: 173–176.

    PubMed  CAS  Google Scholar 

  • Huang S.-L., Su C.H. & Chang S.C. 1997. Tumor necrosis factor-α gene polymorphism in chronic bronchitis. Am. J. Respir. Crit. Care Med. 156: 1436–1439.

    PubMed  CAS  Google Scholar 

  • Imai K., Dalal S.S., Chen E.S., Downey R., Schulman L.L., Ginsburg M. & D’Armiento J. 2001. Human collagenase (matrix metalloproteinase-1) expression in the lungs of patients with emphysema. Am. J. Respir. Crit. Care Med. 163: 786–791.

    PubMed  CAS  Google Scholar 

  • Ioannidis J.P., Ntzani E.E., Trikalinos T.A. & Contopoulos-Ioannidis D.G. 2001. Replication validity of genetic association studies. Nat. Genet. 29: 306–309.

    Article  PubMed  CAS  Google Scholar 

  • Ishii T., Matsuse T., Teramoto S., Matsui H., Miyao M., Hosoi T., Takahashi H., Fukuchi Y. & Ouchi Y. 1999. Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax 54: 693–696.

    Article  PubMed  CAS  Google Scholar 

  • Ishii T., Keicho N., Teramoto S., Azuma A., Kudoh S., Fukuchi Y., Ouchi Y. & Matsuse T. 2001. Association of Gc-globulin variation with susceptibility to COPD and diffuse panbronchiolitis. Eur. Respir. J. 18: 753–757.

    Article  PubMed  CAS  Google Scholar 

  • Ishii T., Matsuse T., Teramoto S., Matsui H., Miyao M., Hosoi T., Takahashi H., Fukuchi Y. & Ouchi Y. 2000. Neither IL-1β, IL-1 receptor antagonist, nor TNF-α polymorphisms are associated with susceptibility to COPD. Respir. Med. 94: 847–851.

    Article  PubMed  CAS  Google Scholar 

  • Ito I., Nagai S., Handa T., Muro S., Hirai T., Tsukino M. & Mishima M. 2005. Matrix metalloproteinase-9 promoter polymorphism associated with upper lung dominant emphysema. Am. J. Respir. Crit. Care Med. 172: 1378–1382.

    Article  PubMed  Google Scholar 

  • Ito I., Nagai S., Hoshino Y., Muro S., Hirai T., Tsukino M. & Mishima M. 2004. Risk and severity of COPD is associated with the group-specific component of serum globulin 1F allele. Chest 125: 63–70.

    Article  PubMed  CAS  Google Scholar 

  • Jiang L., He B., Zhao M.W., Ning L.D., Li X.Y. & Yao W.Z. 2005. Association of gene polymorphisms of tumor necrosis factor-α and interleukin-13 with chronic obstructive pulmonary disease in Han nationality in Beijing. Chin. Med. J. 118: 541–547.

    PubMed  CAS  Google Scholar 

  • Johnson M. 1998. The β-adrenoreceptor. Am. J. Repir. Crit. Care Med. 158: 146–153.

    Google Scholar 

  • Joos L., McIntyre L., Ruan J., Connett J.E., Anthonisen N.R., Weir T.D., Paré P.D. & Sandford A.J. 2001. Association of IL-1β and IL-1 receptor antagonist haplotypes with rate of decline in lung function in smokers. Thorax 56: 863–866.

    Article  PubMed  CAS  Google Scholar 

  • Joos L., He J.Q., Shepherdson M.B., Connett J.E., Anthonisen N.R., Paré P.D. & Sandford A.J. 2002a. The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Hum. Mol. Genet. 11: 569–576.

    Article  PubMed  CAS  Google Scholar 

  • Joos L., Paré P.D. & Sandford A.J. 2002b. Genetic risk factors for chronic obstructive pulmonary disease. Swiss. Med. Wkly. 132: 27–37.

    PubMed  CAS  Google Scholar 

  • Joos L., Weir T.D., Connett J.E., Anthonisen N.R., Woods R., Pare P.D. & Sandford A.J. 2003. Polymorphisms in the β(2)-adrenoreceptor and bronchodilator response, bronchial hyper-responsiveness, and rate of decline in lung function in smokers. Thorax 58: 703–707.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa H., Okamoto T., Hirata K. & Yoshikawa J. 2000. Deletion polymorphisms in the angiotensin-converting enzyme are associated with pulmonary hypertension evoked by exercise challenge in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 162: 1235–1238.

    PubMed  CAS  Google Scholar 

  • Kanazawa H., Otsuka T., Hirata K. & Yoshikawa J. 2002. Association between the angiotensin-converting enzyme gene polymorphisms and tissue oxygenation during exercise in patients with COPD. Chest 121: 697–701.

    Article  PubMed  CAS  Google Scholar 

  • Ketterer B., Harris J.M., Talaska G., Meyer D.J., Pemble S.E., Taylor J.B., Lang N.P. & Kadlubar F.F. 1992. The human glutathione S-transferase supergene family, its polymorphism, and its efects on susceptibility to lung cancer. Environ. Health Perspect. 98: 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Kew R.R. & Webster R.O. 1988. Gc-globulin (vitamin D-binding protein) enhances the neutrophil chemotactic activity of C5a desArg. J. Clin. Invest. 82: 364–369.

    PubMed  CAS  Google Scholar 

  • Kluchová Z. & Tkáčová R. 2006. The role of oxidative stress in lung injury induced by cigarette smoke. Biologia 61: 643–650.

    Article  Google Scholar 

  • Kobilka B.K., Dixon R.A., Frielle T., Dohlman H.G., Bolanowski M.A., Sigal I.S., Yang-feng T.L., Francke U., Caron M.G. & Lefkowitz R.J. 1987. cDNA for the human beta2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc. Natl. Acad. Sci. USA 84: 56–50.

    Article  Google Scholar 

  • Kucukaycan M., Van Krugten M., Pennings H.-J., Huizinga T.W.J., Buurman W.A., Dentener M.A. & Wouters E.F.M. 2002. Tumor necrosis factor-α +489G/A gene polymorphism is associated with chronic obstructive pulmonary disease. Respir. Res. 3: 29–35.

    Article  PubMed  Google Scholar 

  • Landi M.T., Bertazzi P.A., Shields P.G., Clark G., Lucier G.W., Garte S.J., Cosma G. & Caporaso N.E. 1994. Association between CYP1A1 genotype, mRNA expression and enzymatic activity in humans. Pharmacogenetics 4: 242–246.

    Article  PubMed  CAS  Google Scholar 

  • Lesch K.P., Balling U., Gross J., Strauss K., Wolozin B.L., Murphy D.L. & Riederer P. 1994. Organization of the human serotonin transporter gene. J. Neural. Transm. Gen. Sect. 95: 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Lesch K.P. & Moessner R. 1998. Genetically driven variation in serotonin uptake: is there a link to the affective spectrum, neurodevelopmental, and neurodegenarative disorders? Biol. Psychiatry 44: 179–192.

    Article  PubMed  CAS  Google Scholar 

  • Liggett S.B. 2000. Pharmacogenetics of β-1-and β-2-adrenergic receptors. Pharmacology 61: 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Littlejohn M.D., Taylor D.R., Miller A.L. & Kennedy M.A. 2002. Determination of β2-adrenergic receptor (ADRB2) haplotypes by a multiplexed polymerase chain reaction assay. Human Mutation 562: 1–9.

    Google Scholar 

  • Lokke A., Lange P., Scharling H., Fabricius P. & Vestbo J. 2006. Developing COPD: a 25 year follow up study of the general population. Thorax 61: 935–939.

    Article  PubMed  CAS  Google Scholar 

  • MacNee W. 2005. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2: 50–60.

    Article  PubMed  CAS  Google Scholar 

  • Maestrelli P., El Messlemani A.H., De Fina O., Nowicki Y., Saetta M., Mapp C. & Fabbri L.M. 2001. Increased expression of heme oxygenase (HO)-1 in alveolar spaces and HO-2 in alveolar walls of smokers. Am. J. Respir. Crit. Care Med. 164: 1508–1513.

    PubMed  CAS  Google Scholar 

  • Meyers D.A., Larj M.J. & Lange L. 2004. Genetics of asthma and COPD. Similar results for different phenotypes. Chest 126: 105–110.

    Article  Google Scholar 

  • Minematsu N., Nakamura H., Tateno H., Nakajima T. & Yamaguchi K. 2001. Genetic polymorphism in matrix metalloproteinase-9 and pulmonary emphysema. Biochem. Biophys. Res. Commun. 289: 116–119.

    Article  PubMed  CAS  Google Scholar 

  • Morrell N. W., Morris K. G. & Stenmark K. R. 1995. Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am. J. Physiol. Heart Circ. Physiol. 269: H1186–H1194.

    CAS  Google Scholar 

  • Morris D.G., Huang X., Kaminski N., Wang Y., Shapiro S.D., Dolganov G., Glick A. & Sheppard D. 2003. Loss of integrin α(v)β6-mediated TGF-beta activation causes MMP12-dependent emphysema. Nature 22: 169–173.

    Article  CAS  Google Scholar 

  • Murphy D.L., Lerner A., Rudnick G. & Lesch K.P. 2004. Serotonin transporter: gene, genetic disorders and pharmacogenetics. Mol. Int. 4: 109–123.

    Article  CAS  Google Scholar 

  • Nagase H. & Woessner J.F. 1999. Matrix metalloproteinases. J. Biol. Chem. 274: 21491–21494.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnel C.J., Lindpaintner K., Larson M.G., Rao V.S., Ordovas J.M., Schaefer E.J., Myers S.H. & Levy D. 1998. Evidence of association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood presure in men but not women in the Framingham Heart Study. Circulation 97: 1766–1772.

    Google Scholar 

  • Okinaga S., Takahashi K., Takeda K., Yoshizawa M., Fujita H., Sasaki H. & Shibahara S. 1996. Regulation of human heme oxygenase-1 gene expression under thermal stress. Blood 87: 5074–5084.

    PubMed  CAS  Google Scholar 

  • Omiecinski C.J., Aicher L., Holubkov R. & Checkoway H. 1993. Human peripheral lymphocytes as indicators of microsomal epoxide hydrolase activity in liver and lung. Pharmacogenetics 3: 150–158.

    Article  PubMed  CAS  Google Scholar 

  • Palmer L.J., Celedon J.C., Chapman H.A., Speizer F.E., Weiss S.T. & Silverman E.K. 2003. Genome-wide linkage analysis of bronchodilator responsiveness and post-bronchodilator spiro-metric phenotypes in chronic obstructive pulmonary disease. Hum. Mol. Genet. 12: 1199–1210.

    Article  PubMed  CAS  Google Scholar 

  • Park J.Y., Chen L., Wadhwa N. & Tockman M.S. 2005. Polymorphisms for microsomal epoxide hydrolase and genetic susceptibility to COPD. Int. J. Mol. Med. 15: 443–448.

    PubMed  CAS  Google Scholar 

  • Parks W.C. & Shapiro S.D. 2001. Matrix metalloproteinases in lung biology. Respir. Res. 2: 10–19.

    Article  PubMed  CAS  Google Scholar 

  • Pastorelli R., Guanci M., Cerri A., Negri E., Lavecchia C, Fumagalli F., Mezzeti M., Cappelli R., Panigalli T., Fanelli R. & Airoldi L. 1998. Impact of inherited polymorphisms in gluthatione-S-transferase M1, microsomal epoxide hydrolase, cytochrome P450 enzymes on DNA, and blood protein adducts of benzo(a)pyrene-diolepoxide. Cancer Epidemiol. Biomarkers Prev. 7: 703–709.

    PubMed  CAS  Google Scholar 

  • Patuzzo C., Gile L.S., Zorzetto M., Trabetti E., Malerba G., Pignatti P.F. & Luisetti M. 2000. Tumor necrosis factor gene complex in COPD and disseminated bronchiectasis. Chest 117: 1353–1358.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez F., Jardi R., Costa X., Juan D., Galimany R., Vidal R. & Miravitlles M. 2002. Detection of polymorphisms at exons 3 (Tyr113→His) and 4 (His139→Arg) of the microsomal epoxide hydrolase gene using fluorescence PCR method combined with melting curves analysis. Anal. Biochem. 308: 120–126.

    Article  PubMed  CAS  Google Scholar 

  • Ryberg D., Skaug V., Hewer A., Phillips D.H., Harries L.W., Wolf C.R., Ogreid D., Ulvik A., Vu P. & Haugen A. 1997. Genotypes of glutathione transferase M1 and P1 and their significance for lung DNA adduct levels and cancer risk. Carcinogenesis 18: 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  • Sakao S., Tatsumi K., Igari H., Shino Y., Shirasawa H. & Kuriyama T. 2001. Association of tumor necrosis factor-α gene promoter polymorphism with the presence of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 163: 420–422.

    PubMed  CAS  Google Scholar 

  • Sakao S., Tatsumi K., Igari H., Watanabe R., Shino Y., Shirasawa H. & Kuriyama T. 2002. Association of tumor necrosis factor-α gene promoter polymorphism with low attenuation areas on high-resolution CT in patients with COPD. Chest 122: 416–420.

    Article  PubMed  CAS  Google Scholar 

  • Sandford A.J., Chagani T., Weir T.D., Connett J.E., Anthonisen N.R. & Paré P.D. 2001. Susceptibility genes for rapid decline of lung function in the lung health study. Am. J. Respir. Crit. Care Med. 163: 469–473.

    PubMed  CAS  Google Scholar 

  • Sandford A.J. & Silverman E.K. 2002. Chronic obstructive pulmonary disease 1: susceptibility factors for COPD the genotype-environment interaction. Thorax 57: 736–741.

    Article  PubMed  CAS  Google Scholar 

  • Sandford A.J., Weir T.D., Spinelli J.J. & Paré P.D. 1999. Z and S mutations of the α 1-antitrypsin gene and the risk of chronic obstructive pulmonary disease. Am. J. Respir. Cell. Mol. Biol. 20: 287–291.

    PubMed  CAS  Google Scholar 

  • Schellenberg D., Paré P.D., Weir T.D., Spinelli J.J., Walker B.A. & Sandford A.J. 1998. Vitamin D binding protein variants and the risk of COPD: Am. J. Respir. Crit. Care Med. 157: 957–961.

    PubMed  CAS  Google Scholar 

  • Segura-Valdez L., Pardo A., Gaxiola M., Uhal B.D., Becerril C. & Selman M. 2000. Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 117: 684–694.

    Article  PubMed  CAS  Google Scholar 

  • Seifart C., Dempfle A., Plagens A., Seifart U., Clostermann U., Muller B., Vogelmeier C. & von Wichert P. 2005. TNF-α, TNF-β, IL-6, and IL-10 promoter polymorphisms in patients with chronic obstructive pulmonary disease. Tissue Antigens 65: 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Silverman E.K. 2006. Progress in chronic obstructive pulmonary disease genetics. Proc. Am. Thorac. Soc. 3: 405–408.

    Article  PubMed  CAS  Google Scholar 

  • Silverman E.K., Chapman H.A., Drazen J.M., Weiss S.T., Rosner B., Campbell E.J., O’Donnell W.J., Reilly J.J., Ginns L., Mentzer S., Wain J. & Speizer F.E. 1998. Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for airflow obstruction and chronic bronchitis. Am. J. Respir. Crit. Care Med. 157: 1770–1778.

    PubMed  CAS  Google Scholar 

  • Silverman E.K., Mosley J.D., Palmer L.J., Barth M., Senter J.M., Brown A., Drazen J.M., Kwiatkowski D.J., Chapman H.A., Campbell E.J., Province M.A., Rao D.C., Reilly J.J., Ginns L.C., Speizer F.E. & Weiss S.T. 2002a. Genome-wide linkage analysis of severe, early-onset chronic obstructive pulmonary disease: airflow obstruction and chronic bronchitis phenotypes. Hum. Mol. Genet. 11: 623–632.

    Article  PubMed  CAS  Google Scholar 

  • Silverman E.K. & Palmer L.J. 2000. Case-control association studies for the genetics of complex respiratory diseases. Am. J. Respir. Cell. Mol. Biol. 22: 645–648.

    PubMed  CAS  Google Scholar 

  • Silverman E.K., Palmer L.J., Mosley J.D., Barth M., Senter J.M., Brown A., Drazen J.M., Kwiatkowski D.J., Chapman H.A., Campbell E.J., Province M.A., Rao D.C., Reilly J.J., Ginns L.C., Speizer F.E. & Weiss S.T. 2002b. Genome-wide linkage analysis of quantitative spirometric phenotypes in severe early-onset chronic obstructive pulmonary disease. Am. J. Hum. Genet. 70: 1229–1239.

    Article  PubMed  CAS  Google Scholar 

  • Smith C.A. & Harrison D.J. 1997. Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet 350: 630–633.

    Article  PubMed  CAS  Google Scholar 

  • Steinkasserer A., Spurr N.K., Cox S., Jeggo P. & Sim R.B. 1992. The human IL-1 receptor antagonist gene (IL1RN) maps to chromosome 2q14-q21, in the region of the IL-1a and IL-1b loci. Genomics 13: 654–657.

    Article  PubMed  CAS  Google Scholar 

  • Stemmler S., Arinir U., Klein W., Rohde G., Hoffjan S., Wirkus N., Reinitz-Rademacher K., Bufe A., Schultze-Werninghaus G. & Epplen J.T. 2005. Association of interleukin-8 receptor alpha polymorphisms with chronic obstructive pulmonary disease and asthma. Genes Immun. 6: 225–230.

    Article  PubMed  CAS  Google Scholar 

  • Strange R.C., Jones P.W. & Fryer A.A. 2000. Glutathione S-transferases: genetics and role in toxicology. Toxicol. Lett. 112: 357–363.

    Article  PubMed  Google Scholar 

  • Taioli E., Gaspari L., Benhamou S., Boffetta P., Brockmoller J., Butkiewicz D., Cascorbi I., Clapper M.L., Dolzan V., Haugen A., Hirvonen A., Husgafvel-Pursiainen K., Kalina I., Kremers P., Le Marchant L., London S., Rannug A., Romkez M., Schoket B., Seidegard J., Strange R.S., Stucker I., To-Figueras J. & Garte S. 2003. Polymorphisms in CYP1A1, GSTM1, GSTT1 and lung cancer below the age 45 years. Int. J. Epidemiol. 32: 60–63.

    Article  PubMed  CAS  Google Scholar 

  • Tebbutt S.J., James A. & Paré P.D. 2007. Single-nucleotide polymorphisms and lung disease: clinical implications. Chest 131: 1216–1223.

    Article  PubMed  CAS  Google Scholar 

  • Teramoto S., Ishii T., Yamamoto H., Yamaguchi Y., Matsuse T. & Molfino N.A. 2005. Xenobiotic enzymes and genetics of COPD. Chest 127: 408–409.

    Article  PubMed  Google Scholar 

  • Tkac I., Salagovic J., Kozarova M., Rosolova H., Molcanyiova A., Mosorjakova D., Chleboradova M. & Kalina I. 2003. Interaction between angiotensin-converting enzyme genotype and glycaemic control influences lipoprotein levels in type 2 diabetes mellitus. Wien. Klin. Wochenschr. 15: 36–40.

    Google Scholar 

  • Tkacova R., Joppa P., Stancak B., Salagovic J., Misikova S. & Kalina I. 2005. The link between angiotensin-converting enzyme genotype and pulmonary artery pressure in patients with COPD. Wien. Klin. Wochenschr. 17: 210–214.

    Article  CAS  Google Scholar 

  • Tkacova R., Salagovic J., Ceripkova M., Tkac I., Stubna J. & Kalina I. 2004. Glutathione S-transferase M1 gene polymorphism is related to COPD in patients with non-small-cell lung cancer. Wien. Klin. Wochenschr. 116: 131–134.

    Article  PubMed  CAS  Google Scholar 

  • Van der Pouw Kraan T.C., Kucukaycan M., Bakker A.M., Baggen J.M., van der Zee J.S., Dentener M.A., Wouters E.F. & Ver-weij C.L. 2002. Chronic obstructive pulmonary disease is associated with the-1055 IL-13 promoter polymorphism. Genes Immun. 3: 436–439.

    Article  PubMed  CAS  Google Scholar 

  • Van Diemen C.C., Postma D.S., Vonk J.M., Bruinenberg M., Schouten J.P. & Boezen H.M. 2005. A disintegrin and metalloprotease 33 polymorphisms and lung function decline in the general population. Am. J. Respir. Crit. Care Med. 172: 329–333.

    Article  PubMed  Google Scholar 

  • Werner M., Herbon N., Gohlke H., Altmuller J., Knapp M., Heinrich J. & Wjist M. 2004. Asthma is associated with single-nucleotide polymorphisms in ADAM33. Clin. Exp. Allergy 34: 26–31.

    Article  PubMed  CAS  Google Scholar 

  • Wilson A.G., di Giovine F.S., Blakemore A.I.F. & Duff G.W. 1992. Single base polymorphism in the human tumor necrosis factor α gene detectable by NcoI restriction of PCR product. Hum. Mol. Genet. 1: 353.

    Article  PubMed  CAS  Google Scholar 

  • Wouters E.F.M. 2005. Local and systemic inflammation in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2: 26–33.

    Article  PubMed  CAS  Google Scholar 

  • Wu L., Chau J., Young R.P., Pokorny V., Mills G.D., Hopkins R., McLean L. & Black, P.N. 2004. Transforming growth factor-β(1) genotype and susceptibility to chronic obstructive pulmonary disease. Thorax 59: 126–129.

    Article  PubMed  CAS  Google Scholar 

  • Xiao D., Wang C., Du M.J., Pang B.S., Zhang H.Y., Xiao B., Liu J.Z., Weng X.Z., Su L. & Christiani D.C. 2003. [Association between polymorphisms in the microsomal epoxide hydrolase (mEH) gene and chronic obstructive pulmonary disease.] (Article in Chinese) Zhonghua Yi. Xue. Za. Zhi. 83: 1782–1786.

    PubMed  CAS  Google Scholar 

  • Xu S., Wang Y., Roe B. & Pearson W.R. 1998. Characterization of the human class Mu gluthation S-transferase gene cluster and the GSTM1 deletion. J. Biol. Chem. 273: 3517–3527.

    Article  PubMed  CAS  Google Scholar 

  • Yamada N., Yamaya M., Okinaga S., Nakayama K., Sekizawa K. & Shibahara S. 2000. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am. J. Hum. Genet. 66: 187–95.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N. & Homma S. 1991. Vitamin D-binding protein (group-specific component) is a precursor for the macrophage-activating signal factor from lysophosphatidyl-choline-treated lymphocytes. Proc. Natl. Acad. Sci. USA 88: 8539–8543.

    Article  PubMed  CAS  Google Scholar 

  • Yim J.J., Park G.Y., Lee C.-T., Kim Y.M., Han S.K., Shim Y.S. & Yoo C.G. 2000. Genetic susceptibility to chronic obstructive pulmonary disease in Koreans: combined analysis of polymorphic genotypes for microsomal epoxide hydrolase and glutathione S-transferase M1 and T1. Thorax 55: 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Yin L., Pu Y., Lin T.Y., Tung Y.H., Chen K.W. & Lin P. 2001. Genetic polymorphisms of NAD(P)H quinone oxidoreductase, CYP1A1 and microsomal epoxide hydrolase and lung cancer risk in Nanjing, China. Lung Cancer 33: 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa M., Hiyama K., Ishioka S., Maeda H., Maeda A. & Yamakido M. 2000. Microsomal epoxide hydrolase genotypes and chronic obstructive pulmonary disease in Japanese. Int. J. Mol. Med. 5: 49–53.

    PubMed  CAS  Google Scholar 

  • Zhang R., Zhang A., He Q. & Lu B. 2002. [Microsomal epoxide hydrolase gene polymorphism and susceptibility to chronic obstructive pulmonary disease in Han nationality of North China.] (Article in Chinese) Zhonghua Nei. Ke. Za. Zhi. 41: 11–14.

    PubMed  CAS  Google Scholar 

  • Zhou M., Huang S.G., Wan H.Y., Li B., Deng W.W. & Li M. 2004. Genetic polymorphism in matrix metalloproteinase-9 and the susceptibility to chronic obstructive pulmonary disease in Han population of south China. Chin. Med. J. 117: 1481–1484.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ružena Tkáčová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slabá, E., Joppa, P., Šalagovič, J. et al. The role of gene polymorphisms in the pathogenesis of chronic obstructive pulmonary disease. Biologia 63, 20–33 (2008). https://doi.org/10.2478/s11756-008-0020-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-008-0020-4

Key words

Navigation