, Volume 63, Issue 1, pp 94–99 | Cite as

Crossability relationships between Korean firs Abies koreana, A. nephrolepis and A. holophylla and some other representatives of the genus Abies

  • Andrej Kormuťák
  • Seok-Woo Lee
  • Kyung-Nak Hong
  • Byeung-Hook Yang
  • Yong-Pyo Hong
Full Paper


Artificial crossing experiments involving 3 Abies species native to Korean peninsula and 5 other representatives of Abies revealed a high hybridological affinity between Abies koreana and A. nephrolepis. Both these species are reproductively isolated from A. holophylla. All the three Korean species were found to exhibit incompatible relationships with the North American species A. concolor. The species A. holophylla and A. koreana differ also in their abilities to intercross with the Mediterranean firs. The former has been successfully crossed with A. nordmanniana, A. alba and A. cilicica exhibiting 19.1–55.3% crossability, whereas the latter produced filled seeds only with A. nordmanniana reaching 46.4% crossability. A considerable differentiation is postulated to exist between the pair of species A. koreana and A. nephrolepis on the one side and A. holophylla on the other side.

Key words

Abies artificial hybridization crossability relationships Korean species 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chang C.S., Jeon J.J. & Hyun J.O. 1997. An analysis of morphological variation in Abies koreana Wilson and A. nephrolepis/Traut./Maxim. of Korea (Pinaceae) and their phylogenetic problems. J. Korean For. Soc. 86: 378–390.Google Scholar
  2. Charlesworth D. & Charlesworth B. 1987. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18: 237–268.CrossRefGoogle Scholar
  3. Critchfield W.B. 1988. Hybridization of the California firs. For. Sci. 34: 139–151.Google Scholar
  4. Greguss L. 1984. The results of interspecific hybridization of Abies. Zprávy lesníckeho výskumu 1: 10–16. (in Slovak)Google Scholar
  5. Hawley G.J. & DeHayes D.H. 1985. Hybridization among several North American firs. I. Crossability. Can. J. For. Res. 15: 42–49.CrossRefGoogle Scholar
  6. Iizuka K., Nishioka T. & Kono K. 2000. Basic density and duration of bud opening in the interspecies of Abies sachalinensis × A. homolepis and A. sachalinensis × A. veitchii. J. Jap. For. Soc. 82: 196–199.Google Scholar
  7. Isoda K., Shiraishi S., Watanabe S. & Kitamura K. 2000. Molecular evidence of natural hybridization between Abies veitchii and A. homolepis (Pinaceae) revealed by chloroplast, mitochondrial and nuclear DNA markers. Mol. Ecol. 9: 1965–1974.PubMedCrossRefGoogle Scholar
  8. Kim J.S. 1998. Genetic structure and relationships of Abies taxa in Korea based on RAPD markers. PhD Thesis, Seoul National University, 100 pp.Google Scholar
  9. Kim I.S., Hyun J.O. & Hong K.N. 1996. Genetic structure of Abies koreana based on RAPD marker analysis. Abstracts IUFRO’ 96 Symp. Diversity and Adaptation in Forest Ecosystems in a Changing World. August 5–9,1996, UBC, Vancouver, B.C., Canada, pp. 36.Google Scholar
  10. Klaehn F.V. & Winieski J.A. 1962. Interspecific hybridization in the genus Abies. Silvae Genet. 11: 130–142.Google Scholar
  11. Kobliha J. 1994. Crossability of the hybrid Abies cilicica × A. cephalonica with other species of the genus Abies, pp. 51–54. In: Longauer R. (ed.), Breeding of Forest Trees in Changing Climatic Conditions. Forest Research Institute, Zvolen.Google Scholar
  12. Kormuťák A. 1985. Study on species hybridization within the genus Abies. Acta Dendrologica. VEDA, Bratislava, 127 pp.Google Scholar
  13. Kormutak A. & Yang J.Ch. 1998. The Genetics and Embryology of Taiwan fir (Abies kawakamii/Hayata/Ito). Suppl. Taiwan J. For. Sci. 13: 1–78.Google Scholar
  14. Kormuťák A., Vooková B. & Ziegenhagen B. 2002. Reproductive isolation between Colorado white fir (Abies concolor) and the Mediterranean firs. Biologia 57: 527–532.Google Scholar
  15. Mergen F., Burley J. & Simpson B.A. 1964. Artificial hybridization in Abies. Der Züchter 34: 242–251.CrossRefGoogle Scholar
  16. Rohmeder E. & Eisenhut G. 1961. Bastardierungsversuche in der Gattung Abies. Allg. Forstz. 34: 495–497.Google Scholar
  17. Scaltsoyiannes A., Tsaktsira M. & Drouzas A.D. 1999. Allozyme differentiation in the Mediterranean firs (Abies, Pinaceae). A first comparative study with phylogenetic implications. Pl. Syst. Evol. 216: 289–307.CrossRefGoogle Scholar
  18. Smelko S. & Wolf J. 1977. Statistical methods in forestry. Príroda, Bratislava, 232 pp.Google Scholar
  19. Takenouchi M. & Chien J.J. 1957. On Abies sibirica and a new hybrid of the genus Abies in Heilungkiang, China. Acta Phytotaxonomica Sinica VI: 145–160.Google Scholar
  20. Xiang Q.-P., Xiang Q.-Y., Liston A. & Zhang X.-C. 2004. Phylogenetic relatuionships in Abies (Pinaceae): evidence from PCR-RFLP of the nuclear ribosomal DNA internal transcribed spacer region. Bot. J. Linn. Soc. 145: 425–435.CrossRefGoogle Scholar
  21. Wakasugi T., Tsudzuki J., Ito S., Nakashima K., Tsudzuki T. Ŝugiura M. 1994. Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc. Natl. Acad. Sci. USA 91: 9794–9798.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Botany, Slovak Academy of Sciences 2008

Authors and Affiliations

  • Andrej Kormuťák
    • 1
  • Seok-Woo Lee
    • 2
  • Kyung-Nak Hong
    • 2
  • Byeung-Hook Yang
    • 2
  • Yong-Pyo Hong
    • 2
  1. 1.Institute of Plant Genetics and Biotechnology Slovak Academy of SciencesNitraSlovakia
  2. 2.Dpt. of Forest Genetic Resources, Genetic Resources DivisionKorea Forest Research InstituteKyunggi-doRepublic of Korea

Personalised recommendations