Skip to main content
Log in

Total lipid and fatty acid compositions of Lertha sheppardi (Neuroptera: Nemopteridae) during its main life stages

  • Full Paper
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Total lipid and the fatty acid compositions of phospholipid and triacylglycerol fractions, prepared from eggs, 3rd instars of larvae, pupae, male and female adults of Lertha sheppardi, were analyzed by gas chromatography and gas chromatography-mass spectrometry. The effect of diet (adults’ nutrition) on fatty acid composition of L. sheppardi adults was also investigated. Total lipid of L. sheppardi considerably increased in adults compared with immature stages. There was a significant decrease in total lipid level in larval stage in contrast with egg stage. Qualitative analysis revealed the presence of 14 fatty acids during all stages. The major components were C16 and C18 saturated and unsaturated components which are ubiquitous to most animal species. In addition to these components, one odd-chain (C17:0) and prostaglandin precursor fatty acids were found. The fatty acid profiles of phospholipids and triacylglycerols were substantially different. In phospholipid fraction, monounsaturated fatty acids were the major proportion of fatty acids in both sex of adults and pupae, whereas polyunsaturated fatty acids were the most dominant fatty acids in eggs and 3rd instars. Results of triacylglycerol fraction revealed that fatty acid composition of eggs had higher level of C16:1, C18:0 and C18:3n-3 content than that of 3rd instars and pupae, which suggests accumulation of energetic and structural reserve materials during embryonic development. At more advanced developmental stages, mainly in adult females, the amount of C16:1 increased once again, which may be related to the need for accumulation of sufficient energy and of carbon reservoir in the developing new vitellum. Percentages of C18:1 were significantly high in adult stages compared to other stages. These findings indicate that the accumulation and consumption of fatty acids fluctuate through different development stages. Diet did not effect the fatty acid composition of L. sheppardi adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FA:

fatty acid

FAME:

fatty acid methyl ester

MUFA:

monounsaturated fatty acid

PL:

phospholipid

PUFA:

polyunsaturated fatty acid

SFA:

saturated fatty acid

TG:

triacylglycerol

TLC:

thin-layer chromatography

References

  • Agrell I.P.S. & Lundquist A.M. 1973. Physiological and biochemical changes during insect development, pp. 159–247. In: Rockstein M. (ed) The Physiology of Insecta, vol. I. Academic Press, New York.

    Google Scholar 

  • Akpinar M.A., Akpinar N., Gencer L. & Turkoglu S. 2003. Fatty acid composition of Gryllus campestris L. (Orthoptera: Gryllidae) during its various developmental stages. Biologia 58: 1053–1059.

    CAS  Google Scholar 

  • Albrecht W.N., Chio L. & Sanborn J.R. 1977. Composition of fatty acids in Culex pipiens quinquefasciatus. A developmental study. Insect Biochem. 7: 435–442.

    Article  CAS  Google Scholar 

  • Bashan M., Akbas H. & Yurdakoc K. 2002. Phospholipid and triacylglycerol fatty acid composition of major life stage of sunn pest Eurygaster integriceps (Heteroptera: Scutelleridae). Comp. Biochem. Physiol. 132: 375–380.

    Google Scholar 

  • Bashan M. & Cakmak O. 2005. Changes in phosholipid and triacylglycerol fatty acids prepared from prediapausing and diapausing individuals of Dolycoris baccarum and Piezodorus lituratus (Heteroptera: Pentatomidae). Ann. Entomol. Soc. Am. 98: 575–579.

    Article  CAS  Google Scholar 

  • Beenakkers A.M., Horst D. & Marrewilk V. 1985. Insect lipids and lipoproteins, and their role in physiological processes. Progr. Lipid Res. 24: 19–67.

    Article  CAS  Google Scholar 

  • Blingh E.G. & Dyer W.J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    Google Scholar 

  • Blomquist G.J. & Dillwith J.W. 1985. Cuticular lipids, pp. 117–154. In: Kerkut G.A. & Gilbert L.I. (eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon Press, Oxford.

    Google Scholar 

  • Bozkus K. 2003. Phospholipid and triacylglycerol fatty acid compositions from various development stages of Melanogryllus desertus Pall. (Orthoptera:Gryllidae). Tr. J. Biol. 27: 73–78.

    CAS  Google Scholar 

  • Candy D.J. & Kilby B.A. 1975. Insect Biochemistry and Function. Chapman & Hall, London.

    Google Scholar 

  • Chamberlain P.M. & Black H.I. 2005. Fatty acid composition of Collembola, unusually proportions of C20 polyunsaturated fatty acids in a terrestrial invertebrate. Comp. Biochem. Physiol. 140B: 299–307.

    CAS  Google Scholar 

  • Christie W.W. 1982. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipid Res. 23: 1072–1075

    PubMed  CAS  Google Scholar 

  • Cripps C., Blomquist G. J. & De Renobales M. 1988. Changes in lipid biosynthesis during development of the house cricket, Acheta domesticus (Orthoptera:Gryllidae). Bull. Entomol. Soc. Am. 34: 127–131.

    Google Scholar 

  • Cripps C. & De Renobales M. 1988. Developmental changes in fatty acid biosynthesis and composition in the house cricket, Acheta domesticus. Arch. Insect Biochem. Physiol. 9: 357–366.

    Article  CAS  Google Scholar 

  • Downer R.G.H. 1985. Lipid metabolism, pp. 77–113. In: Kerkut G.A. & Gilbert L.I. (eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology. Pergamon Press, Oxford.

    Google Scholar 

  • Fast P.G. 1970. Insect lipids, pp. 181–242. In: Holman R.T. (ed.) Progress in the Chemistry of Fats and Other Lipids, vol. 11. Pergamon Press, Oxford.

    Google Scholar 

  • Gilby A.R. 1965. Lipids and their metabolism in insects. Annu. Rev. Entomol. 10: 141–160.

    Article  CAS  Google Scholar 

  • Hanson R.J., Cummins, K.W., Cargill, A.S. & Lowety, R.R. 1985. Lipid content, fatty acid composition and the effect of diet on fats of aquatic insects. Comp. Biochem. Physiol. 80B: 257–276.

    CAS  Google Scholar 

  • Harlow R.D., Lumb R.H. & Wood R. 1968. Insect lipids, carbon number distribution of triglycerides in five species. Comp. Biochem. Physiol. 30: 761–769.

    Google Scholar 

  • Hodges J.D. & Barras S.J. 1974. Fatty acid composition of Dendroctonus frontalis at various development stages. Ann. Entomol. Soc. Am. 67: 51–62.

    CAS  Google Scholar 

  • Howard R.W. & Stanley-Samuelson D.W. 1990. Phospholipid fatty acid composition and arachidonic acid metabolism in selected tissues of adult Tenebrio molitor. Ann. Entomol. Soc. Am. 83: 975–981.

    CAS  Google Scholar 

  • Howard R.W., Witters N.A. & Stanley-Samuelson D.W. 1992. Phospholipid fatty acid composition and distrubition pattern of prostaglandin in malphigian tubules of yellow mealworm (Coleoptera: Tenebrionidae). Ann. Entomol. Soc. Am. 4: 489–498.

    Google Scholar 

  • Janda V. 1975. Synthesis and utilization of tissue proteins and lipids during the larval-pupal transformation of Galleria mellonella. Acta. Entomol Bohemoslov. 72: 227–231.

    Google Scholar 

  • Kilincer N., Gurkan M.O. & Melan K. 1987. Researches on the lipids of Aelia rostrata Boh. and Eurygaster maura L. (Heteroptera: Scutelleridae) during the hibernation, pp. 417–426. In: First Entomology Congress of Turkey, 13–16 October 1987.

  • Kinsella J.E. 1966. Metabolic pattern of the fatty acids of Periplaneta americana (L.) during its development. Can J. Biochem. 44: 247–251.

    Article  PubMed  CAS  Google Scholar 

  • Lambremont E.N. 1971. Synthesis and metabolism of long chain fatty acids during late during late developmental stages of Heliothis zea (Lepidoptera, Noctuidae). Insect Biochem. 1: 14–19.

    Article  CAS  Google Scholar 

  • Lambremont E.N., Blum M.S. & Schrader R.M. 1964. Storage and fatty acid composition of tryglicerides during adult diapause of the boll weevil. Ann. Entomol. Soc. Am. 57: 526–532.

    CAS  Google Scholar 

  • Lemesle A., Thierry D., Foussard F. & Canard M. 1997. Preliminary study on lipids in Chrysoperla kolthoffi during diapause (Neuroptera, Chrospidae). Acta Zool. Fennica 209: 141–144.

    Google Scholar 

  • Madariaga M., Mata F., Municio A.M. & Ribera A. 1974. Changes in the fatty acid patterns of glycerolipids of Dacus oleae during metamorphosis and development. Insect Biochem. 4: 151–160.

    Article  CAS  Google Scholar 

  • Mansell M. 1992. The systematic position of the Nemopteridae (Insecta: Neuroptera: Myrmeleontidae), pp. 233–241. In: Canard M., Aspöck H. & Mansell M.W. (eds) Current Research in Neuropterology, Proceedings of the Fourth International Symposium on Neuropterology, 24–27 June 1991, Toulouse, France.

  • Maulding J.K., Lambremont E.N. & Graves J.B. 1971. Principal lipid classes and fatty acids synthesized during growth and development of the beetle Lyctus planicollis. Insect Biochem. 1: 316–326.

    Article  Google Scholar 

  • McFarlane J.E., Alli I. & Steeves E. 1984. Studies on the group effect in Acheta domesticus (L.) using artificial diets. J. Insect Physiol. 2: 103–107.

    Article  Google Scholar 

  • Miller G.J. & Blankenship J.W. 1973. Influence of dietary lipids upon lipids in larvae and adults of the dried-fruit moth. J. Insect Physiol. 19: 65–70.

    Article  CAS  Google Scholar 

  • Monserrat V.J. & Martinez M.D. 1995. On the possible myrmecophily of Nemopterinae larvae (Neuroptera, Nemopteridae). Sociobiology 26: 55–68.

    Google Scholar 

  • Nelson D.R., Freeman T.P., Buckner J.S., Hoelmer K.A., Jackson C.G. & Hagler J.R. 2003. Characterization of the cuticular surface wax pores and the waxy particles of the dustywing, Semidalis flinti (Neuroptera: Coniopterygidae). Comp. Biochem. Physiol. 136B: 343–356.

    CAS  Google Scholar 

  • Nelson D.R. & Sukkestad D.R. 1968. Fatty acid composition of the diet and larvae and biosynthesis of fatty acids from 14C-acetate in the cabbage looper, Trichoplusia ni. J. Insect Physiol. 14: 293–300.

    Article  CAS  Google Scholar 

  • Nestel D., Tolmasky D., Rabossi A. & Quesada-Allue L.A. 2003. Lipid, carbohydrates and protein patterns during metamorphosis of the Mediterranean fruit fly, Ceratitis capitata (Diptera; Tephritidae). Ann. Entomol. Soc. Am. 96: 237–244.

    Article  CAS  Google Scholar 

  • Nurullahoglu U., Uckan F., Sak O. & Ergin E. 2004. Total lipid and fatty acid composition of Apanteles galleriae and its parasitized host. Ann. Entomol. Soc. Am. 97: 1000–1006.

    Article  CAS  Google Scholar 

  • Ogg C.L. & Stanley-Samuelson D.W. 1992. Phospholipid and triacylglycerol fatty acid composition of the major life stages and selected tissues of the tobaco hornworm Manduca sexta. Comp. Biochem. Physiol. 101B: 345–351.

    CAS  Google Scholar 

  • Pagani R., Suarez A. & Municio A.M. 1980. Fatty acid patterns of major lipid classes during development of Ceratitis capitata. Comp. Biochem Physiol. 67B: 511–518.

    CAS  Google Scholar 

  • Parasad S.V., Warnakulasuriya G.F., Sumida M., Law J. & Wells M.A. 1986. Lipoprotein biosynthesis in the larvae of the tobacco hornworm, Manduca sexta. J. Biol. Chem. 261: 174–176.

    Google Scholar 

  • Satar A. & Özbay C. 2004. Eggs, first instar larvae and distribution of the neuropterids Lertha extensa and L. shappardi (Neuroptera: Nemopteridae) in south-eastern Turkey. Zool. Middle East 32: 91–96.

    Google Scholar 

  • Schaefer C.H. 1968. The relationship of the fatty acid composition of Heliothis zea larvae to that of its diet. J. Insect Physiol. 14: 171–178.

    Article  CAS  Google Scholar 

  • Spike B.P., Wright R.J., Danielson S.D. & Stanley-Samuelson D.W. 1991. The fatty acid compositions of phospholipids and triacylglycerols, from two chinch bug species Blissus leucopterus leucopterus and B. iowensis (Insecta; Hemiptera; Lygaeidae) are similar to the characteristic dipteran pattern. Comp. Biochem. Physiol. 99B: 799–802.

    CAS  Google Scholar 

  • Stanley D.W. 2006. Prostaglandins and other eicosanoids in insects: biological significance. Ann. Rev. Entomol. 51: 25–44.

    Article  CAS  Google Scholar 

  • Stanley-Samuelson D.W. 1984. 9-eicosaenoic acid: a predominantly male triaclylglycerol fatty acid in the waxmoth, Galeria mellonella. Comp. Biochem. Physiol. 77B: 443–449.

    CAS  Google Scholar 

  • Stanley-Samuelson D.W. & Dadd R.H. 1981. Arachidonic and other tissue fatty acids of Culex pipiens reared with various concentrations of dietary arachidonic acid. J. Insect Physiol. 27: 571–578.

    Article  CAS  Google Scholar 

  • Stanley-Samuelson D.W. & Dadd R.H. 1983. Long chain polyunsaturated fatty acids: patterns of occurrence in insects. Insect Biochem. 13: 549–558.

    Article  CAS  Google Scholar 

  • Stanley-Samuelson D.W., Howard R.W. & Toolson E.C. 1990. Pospholipid fatty acid composition and arachidonic acid uptake, and metabolism by the cicada Tibicen dealbatus (Homoptera: Cicadidae). Comp. Biochem. Physiol 97B: 285–289.

    CAS  Google Scholar 

  • Stanley-Samuelson D.W., Jurenka R.A., Cripps C., Blomquist G.J. & De Renobales M. 1988. Fatty acids in insect composition, metabolism, and biological significance. Arch. Insect Biochem. Physiol. 9: 1–33.

    Article  CAS  Google Scholar 

  • Stanley-Samuelson D.W., O’Dell T., Ogg C.L. & Keena M.A. 1992. Polyunsaturated fatty acid metabolism inferred from fatty acid compositions of the diets and tissues of the gypsy moth Lymantria dispar. Comp. Biochem. Physiol. 102A: 173–178.

    Article  CAS  Google Scholar 

  • Takata N. & Harwood R.F. 1964. Fatty acid composition during postembryonic development of the mosquito Culex torsalis. Ann. Entomol. Soc. Am. 57: 749–753.

    CAS  Google Scholar 

  • Thompson S.N. 1973. A review and comparative characterization of the fatty acid compositions of seven insect orders. Comp. Biochem. Physiol. 45: 467–482.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Cakmak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cakmak, O., Bashan, M. & Satar, A. Total lipid and fatty acid compositions of Lertha sheppardi (Neuroptera: Nemopteridae) during its main life stages. Biologia 62, 774–780 (2007). https://doi.org/10.2478/s11756-007-0147-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-007-0147-8

Key words

Navigation