Abstract
For the production of recombinant proteins, product purification is potentially difficult and expensive. Plant oleosins are capable of anchoring onto the surface of natural or artificial oil bodies. The oleosin fusion expression systems allow products to be extracted with oil bodies. In vivo, oleosin fusions are produced and directly localized to natural oil bodies in transgenic plant seeds. Via the oleosin fusion technology the thrombin inhibitor hirudin has been successfully produced and commercially used in Canada. In vitro, artificial oil bodies have been used as “carriers” for the recombinant proteins expressed in transformed microbes. In this article, plant oleosins, strategies and limitations of the oleosin fusion expression systems are summarized, alongside with progress and applications. The oleosin fusion expression systems reveal an available way to produce recombinant biopharmaceuticals at large scale.
Abbreviations
- AOBs:
-
artificial oil bodies
- GUS:
-
β-glucuronidase
- PL:
-
phospholipid
- TAG:
-
triacylglycerol
References
Chaudhary S., Parmenter D.L. & Moloney M.M. 1998. Transgenic Brassica carinata as a vehicle for the production of recombinant proteins in seeds. Plant Cell Rep. 17: 195–200.
Chen M.C., Chyan C.L., Lee T.T., Huang S.H. & Tzen J.T. 2004. Constitution of stable artificial oil bodies with triacylglycerol, phospholipid and caleosin. J. Agric. Food Chem. 52: 3982–3987.
Chiang C.J., Chen H.C., Chao Y.P. & Tzen J.T. 2005. Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli. J. Agric. Food Chem. 53: 4799–4804.
Chiang C.J., Chen H.C., Chao Y.P. & Tzen J.T. 2007. One-step purification of insoluble hydantoinase overproduced in Escherichia coli. Protein Expr. Purif. 52: 14–18.
Clausen M.K., Christiansen K., Jensen P.K. & Behnke O. 1974. Isolation of lipid particles from baker’s yeast. FEBS Lett. 43: 176–179.
Cummins I. & Murphy D.J. 1992. cDNA sequence of a sunflower oleosin and transcript tissue specificity. Plant Mol. Biol. 19: 873–876.
de Oliveira D.E., Franco L.O., Simoens C., Seurinck J., Coppieters J., Botterman J. & Van Montagu M. 1993. Inflorescence-specific genes from Arabidopsis thaliana encoding glycine-rich proteins. Plant J. 3: 495–507.
Hatzopoulos P., Franz G., Choy L. & Sung R.E. 1990. Interaction of nuclear factors with upstream sequences of a lipid body membrane protein gene from carrot. Plant Cell 2: 457–467.
Huang A.H.C. 1992. Oil bodies and oleosins in seeds. Annu. Rev. Plant Physiol. Mol. Biol. 43: 177–200.
Huang A.H.C. 1996. Oleosins and oil bodies in seeds and other organs. Plant Physiol. 110: 1055–1061.
Hughes D.W., Wang H.Y.C. & Galau G.A. 1993. Cotton (Gossupium hirsutum) MatP6 and MatP7 oleosin genes. Plant Physiol. 101: 697–698.
Keddie J.S., Edwards E.W., Gibbons T., Shaw C.H. & Murphy D.J. 1992. Sequence of an oleosin cDNA from Brassica napus. Plant Mol. Biol. 19: 1079–1083.
Leber R., Zinser E., Zellnig G., Paltauf F. & Daum G. 1994. Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10: 1421–1428.
Lee W.S., Tzen J.T.C., Kridl J.C., Radke S.E. & Huang A.H.C. 1991. Maize oleosin is correctly targeted to seed oil bodies in Brassica napus transformed with the maize oleosin gene. Proc. Natl. Acad. Sci. USA 88: 6181–6185.
Liu J.H., Selinger L.B., Cheng K.J., Beauchemin K.A. & Moloney M.M. 1997. Plant seed oil-bodies as an immobilization matrix for a recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Mol. Breed. 3: 463–470.
Murgia M., Charzynska M., Rougier M. & Cresti M. 1991. Secretory tapetum of Brassica oleracea L.: polarity and ultrastructural features. Sex. Plant Reprod. 4: 28–35.
Murphy D.J. 1993. Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Progr. Lipid Res. 32: 247–280.
Nykiforuk C.L., Boothe J.G., Murray E.W., Keon R.G., Goren H.J., Markley N.A. & Moloney M.M. 2006. Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol. J. 4: 77–85.
Owen H.A. & Makaroff C.A. 1995. Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185: 7–21.
Parmenter D.L., Boothe J.G., van Rooijen G.J., Yeung E.C. & Moloney M.M. 1995. Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Mol. Biol. 29: 1167–1180.
Pen J., Verwoerd T.C. & Van Paridon P.A. 1993. Phytase-containing transgenic seed as a novel feed additive for improved phosphorus utilization. Biotechnology 11: 811–814.
Peng C.C., Chen J.C., Shyu D.J., Chen M.J. & Tzen J.T. 2004a. A system for purification of recombinant proteins in Escherichia coli via artificial oil bodies constituted with their oleosin-fused polypeptides. J. Biotechnol. 111: 51–57.
Peng C.C., Shyu D.J., Chou W.M., Chen M.J. & Tzen J.T. 2004b. Method for bacterial expression and purification of sesame cystatin via artificial oil bodies. J. Agric. Food Chem. 52: 3115–3119.
Polowick P.L. & Sawhney V.K. 1990. Microsporogenesis in a normal line and in the ogu cytoplasmic male-sterile line of Brassica napus. I. The influence of high temperature. Sex. Plant Reprod. 3: 263–276.
Qu R. & Huang A.H.C. 1990. Oleosin KD18 on the surface of oil bodies in maize. Genomic and cDNA sequences and the deduced protein structure. J. Biol. Chem. 265: 2236–2243.
Robert L.S., Gerster J., Allard S., Cass L. & Simmonds J. 1994. Molecular characterization of two Brassica napus genes related to oleosins which are highly expressed in the tapetum. Plant J. 6: 927–933.
Roberts M.R., Hodge R., Ross J.H.E., Soremsen A., Murphy D.S., Draper J. & Scott R. 1993. Characterization of a new class of oleosins suggests a male gametophyte-specific lipid storage pathway. Plant J. 3: 629–636.
Sarmiento C., Ross J.H.E., Herman E. & Murphy D.J. 1997. Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil body formation in seeds. Plant J. 11: 783–796.
Tai S.S., Chen M.C., Peng C.C. & Tzen J.T. 2002. Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies. Biosci. Biotechnol. Biochem. 66: 2146–2153.
Ting G., Balsamo R., Ratnayake C. & Huang A.H.C. 1997. Oleosin of plant seed oil bodies is correctly targeted to lipid bodies in transformed yeast. J. Biol. Chem. 272: 3699–3706.
Tzen J.T., Chuang R.L., Chen J.C. & Wu L.S. 1998. Coexistence of both oleosin isoforms on the surface of seed oil bodies and their individual stabilization to the organelles. J. Biochem. 123: 318–323.
Tzen J.T., Lai Y.K., Chan K.L. & Huang A.H.C. 1990. Oleosin isoforms of high and low molecular weights are present in the oil bodies of diverse seed species. Plant Physiol. 94: 1282–1289.
Vance V.B. & Huang A.H.C. 1988. Expression of lipid body protein gene during maize seed development. J. Biol. Chem. 263: 1476–1481.
Vandekerckhove J., Van Damme J., Van Lijsebettens M., Botterman J., De Block M., Vandewiele M., De Clercq A., Leemans J., Van Montagu M. & Krebbers E. 1989. Enkephalines produced in transgenic plants using modified 2S storage proteins. Biotechnology 7: 929–932.
van Rooijen G.J. & Moloney M.M. 1995. Plant seed oil-bodies as carriers for foreign proteins. Biotechnology 13: 72–77.
van Rooijen G.J., Terning L.I. & Moloney M.M. 1992. Nucleotide sequence of an Arabidopsis thalianá oleosin gene. Plant Mol. Biol. 18: 1177–1179.
Wahlroos T., Soukka J., Denesyuk A., Wahlroos R., Korpela T. & Kilby N.J. 2003. Oleosin expression and trafficking during oil body biogenesis in tobacco leaf cells. Genetics 35: 125–132.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ling, H. Oleosin fusion expression systems for the production of recombinant proteins. Biologia 62, 119–123 (2007). https://doi.org/10.2478/s11756-007-0041-4
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.2478/s11756-007-0041-4