Skip to main content
Log in

Oleosin fusion expression systems for the production of recombinant proteins

Biologia Aims and scope Submit manuscript

Abstract

For the production of recombinant proteins, product purification is potentially difficult and expensive. Plant oleosins are capable of anchoring onto the surface of natural or artificial oil bodies. The oleosin fusion expression systems allow products to be extracted with oil bodies. In vivo, oleosin fusions are produced and directly localized to natural oil bodies in transgenic plant seeds. Via the oleosin fusion technology the thrombin inhibitor hirudin has been successfully produced and commercially used in Canada. In vitro, artificial oil bodies have been used as “carriers” for the recombinant proteins expressed in transformed microbes. In this article, plant oleosins, strategies and limitations of the oleosin fusion expression systems are summarized, alongside with progress and applications. The oleosin fusion expression systems reveal an available way to produce recombinant biopharmaceuticals at large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

AOBs:

artificial oil bodies

GUS:

β-glucuronidase

PL:

phospholipid

TAG:

triacylglycerol

References

  • Chaudhary S., Parmenter D.L. & Moloney M.M. 1998. Transgenic Brassica carinata as a vehicle for the production of recombinant proteins in seeds. Plant Cell Rep. 17: 195–200.

    Article  CAS  Google Scholar 

  • Chen M.C., Chyan C.L., Lee T.T., Huang S.H. & Tzen J.T. 2004. Constitution of stable artificial oil bodies with triacylglycerol, phospholipid and caleosin. J. Agric. Food Chem. 52: 3982–3987.

    Article  PubMed  CAS  Google Scholar 

  • Chiang C.J., Chen H.C., Chao Y.P. & Tzen J.T. 2005. Efficient system of artificial oil bodies for functional expression and purification of recombinant nattokinase in Escherichia coli. J. Agric. Food Chem. 53: 4799–4804.

    Article  PubMed  CAS  Google Scholar 

  • Chiang C.J., Chen H.C., Chao Y.P. & Tzen J.T. 2007. One-step purification of insoluble hydantoinase overproduced in Escherichia coli. Protein Expr. Purif. 52: 14–18.

    Article  PubMed  CAS  Google Scholar 

  • Clausen M.K., Christiansen K., Jensen P.K. & Behnke O. 1974. Isolation of lipid particles from baker’s yeast. FEBS Lett. 43: 176–179.

    Article  PubMed  CAS  Google Scholar 

  • Cummins I. & Murphy D.J. 1992. cDNA sequence of a sunflower oleosin and transcript tissue specificity. Plant Mol. Biol. 19: 873–876.

    Article  PubMed  CAS  Google Scholar 

  • de Oliveira D.E., Franco L.O., Simoens C., Seurinck J., Coppieters J., Botterman J. & Van Montagu M. 1993. Inflorescence-specific genes from Arabidopsis thaliana encoding glycine-rich proteins. Plant J. 3: 495–507.

    Article  PubMed  Google Scholar 

  • Hatzopoulos P., Franz G., Choy L. & Sung R.E. 1990. Interaction of nuclear factors with upstream sequences of a lipid body membrane protein gene from carrot. Plant Cell 2: 457–467.

    Article  PubMed  CAS  Google Scholar 

  • Huang A.H.C. 1992. Oil bodies and oleosins in seeds. Annu. Rev. Plant Physiol. Mol. Biol. 43: 177–200.

    Article  CAS  Google Scholar 

  • Huang A.H.C. 1996. Oleosins and oil bodies in seeds and other organs. Plant Physiol. 110: 1055–1061.

    Article  PubMed  CAS  Google Scholar 

  • Hughes D.W., Wang H.Y.C. & Galau G.A. 1993. Cotton (Gossupium hirsutum) MatP6 and MatP7 oleosin genes. Plant Physiol. 101: 697–698.

    Article  PubMed  CAS  Google Scholar 

  • Keddie J.S., Edwards E.W., Gibbons T., Shaw C.H. & Murphy D.J. 1992. Sequence of an oleosin cDNA from Brassica napus. Plant Mol. Biol. 19: 1079–1083.

    Article  PubMed  CAS  Google Scholar 

  • Leber R., Zinser E., Zellnig G., Paltauf F. & Daum G. 1994. Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast 10: 1421–1428.

    CAS  Google Scholar 

  • Lee W.S., Tzen J.T.C., Kridl J.C., Radke S.E. & Huang A.H.C. 1991. Maize oleosin is correctly targeted to seed oil bodies in Brassica napus transformed with the maize oleosin gene. Proc. Natl. Acad. Sci. USA 88: 6181–6185.

    Article  PubMed  CAS  Google Scholar 

  • Liu J.H., Selinger L.B., Cheng K.J., Beauchemin K.A. & Moloney M.M. 1997. Plant seed oil-bodies as an immobilization matrix for a recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Mol. Breed. 3: 463–470.

    Article  CAS  Google Scholar 

  • Murgia M., Charzynska M., Rougier M. & Cresti M. 1991. Secretory tapetum of Brassica oleracea L.: polarity and ultrastructural features. Sex. Plant Reprod. 4: 28–35.

    Google Scholar 

  • Murphy D.J. 1993. Structure, function and biogenesis of storage lipid bodies and oleosins in plants. Progr. Lipid Res. 32: 247–280.

    Article  CAS  Google Scholar 

  • Nykiforuk C.L., Boothe J.G., Murray E.W., Keon R.G., Goren H.J., Markley N.A. & Moloney M.M. 2006. Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds. Plant Biotechnol. J. 4: 77–85.

    Article  PubMed  CAS  Google Scholar 

  • Owen H.A. & Makaroff C.A. 1995. Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185: 7–21.

    Article  Google Scholar 

  • Parmenter D.L., Boothe J.G., van Rooijen G.J., Yeung E.C. & Moloney M.M. 1995. Production of biologically active hirudin in plant seeds using oleosin partitioning. Plant Mol. Biol. 29: 1167–1180.

    Article  PubMed  CAS  Google Scholar 

  • Pen J., Verwoerd T.C. & Van Paridon P.A. 1993. Phytase-containing transgenic seed as a novel feed additive for improved phosphorus utilization. Biotechnology 11: 811–814.

    Article  CAS  Google Scholar 

  • Peng C.C., Chen J.C., Shyu D.J., Chen M.J. & Tzen J.T. 2004a. A system for purification of recombinant proteins in Escherichia coli via artificial oil bodies constituted with their oleosin-fused polypeptides. J. Biotechnol. 111: 51–57.

    Article  PubMed  CAS  Google Scholar 

  • Peng C.C., Shyu D.J., Chou W.M., Chen M.J. & Tzen J.T. 2004b. Method for bacterial expression and purification of sesame cystatin via artificial oil bodies. J. Agric. Food Chem. 52: 3115–3119.

    Article  PubMed  CAS  Google Scholar 

  • Polowick P.L. & Sawhney V.K. 1990. Microsporogenesis in a normal line and in the ogu cytoplasmic male-sterile line of Brassica napus. I. The influence of high temperature. Sex. Plant Reprod. 3: 263–276.

    Article  Google Scholar 

  • Qu R. & Huang A.H.C. 1990. Oleosin KD18 on the surface of oil bodies in maize. Genomic and cDNA sequences and the deduced protein structure. J. Biol. Chem. 265: 2236–2243.

    Google Scholar 

  • Robert L.S., Gerster J., Allard S., Cass L. & Simmonds J. 1994. Molecular characterization of two Brassica napus genes related to oleosins which are highly expressed in the tapetum. Plant J. 6: 927–933.

    Article  PubMed  CAS  Google Scholar 

  • Roberts M.R., Hodge R., Ross J.H.E., Soremsen A., Murphy D.S., Draper J. & Scott R. 1993. Characterization of a new class of oleosins suggests a male gametophyte-specific lipid storage pathway. Plant J. 3: 629–636.

    Article  PubMed  CAS  Google Scholar 

  • Sarmiento C., Ross J.H.E., Herman E. & Murphy D.J. 1997. Expression and subcellular targeting of a soybean oleosin in transgenic rapeseed. Implications for the mechanism of oil body formation in seeds. Plant J. 11: 783–796.

    Article  PubMed  CAS  Google Scholar 

  • Tai S.S., Chen M.C., Peng C.C. & Tzen J.T. 2002. Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies. Biosci. Biotechnol. Biochem. 66: 2146–2153.

    Article  PubMed  CAS  Google Scholar 

  • Ting G., Balsamo R., Ratnayake C. & Huang A.H.C. 1997. Oleosin of plant seed oil bodies is correctly targeted to lipid bodies in transformed yeast. J. Biol. Chem. 272: 3699–3706.

    Article  PubMed  CAS  Google Scholar 

  • Tzen J.T., Chuang R.L., Chen J.C. & Wu L.S. 1998. Coexistence of both oleosin isoforms on the surface of seed oil bodies and their individual stabilization to the organelles. J. Biochem. 123: 318–323.

    PubMed  CAS  Google Scholar 

  • Tzen J.T., Lai Y.K., Chan K.L. & Huang A.H.C. 1990. Oleosin isoforms of high and low molecular weights are present in the oil bodies of diverse seed species. Plant Physiol. 94: 1282–1289.

    Article  PubMed  CAS  Google Scholar 

  • Vance V.B. & Huang A.H.C. 1988. Expression of lipid body protein gene during maize seed development. J. Biol. Chem. 263: 1476–1481.

    CAS  Google Scholar 

  • Vandekerckhove J., Van Damme J., Van Lijsebettens M., Botterman J., De Block M., Vandewiele M., De Clercq A., Leemans J., Van Montagu M. & Krebbers E. 1989. Enkephalines produced in transgenic plants using modified 2S storage proteins. Biotechnology 7: 929–932.

    Article  CAS  Google Scholar 

  • van Rooijen G.J. & Moloney M.M. 1995. Plant seed oil-bodies as carriers for foreign proteins. Biotechnology 13: 72–77.

    Article  PubMed  Google Scholar 

  • van Rooijen G.J., Terning L.I. & Moloney M.M. 1992. Nucleotide sequence of an Arabidopsis thalianá oleosin gene. Plant Mol. Biol. 18: 1177–1179.

    Article  PubMed  Google Scholar 

  • Wahlroos T., Soukka J., Denesyuk A., Wahlroos R., Korpela T. & Kilby N.J. 2003. Oleosin expression and trafficking during oil body biogenesis in tobacco leaf cells. Genetics 35: 125–132.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ling, H. Oleosin fusion expression systems for the production of recombinant proteins. Biologia 62, 119–123 (2007). https://doi.org/10.2478/s11756-007-0041-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-007-0041-4

Key words

Navigation