Skip to main content

Advertisement

Log in

Chemical composition of the Tatra Mountain lakes: Response to acidification

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Data from two surveys of the Tatra Mountain lakes (Slovakia and Poland) performed in the autumns of 1984 (53 lakes) and 1993 or 1994 (92 lakes) were used to estimate spatial variability in water chemistry in this lake district during the period of maximum European acid deposition. The ionic content of the lakes was generally low, with conductivity (at 20°C) ranging from 1.1 to 4.7 mS m−1 and 23% of the lakes had a depleted carbonate buffering system. Major factors governing differences in lake-water chemistry were bedrock composition and amount of soil and vegetation in their catchment areas. Compared to lakes in the predominantly granitic central part of the Tatra Mountains, lakes in the West Tatra Mountains had higher concentrations of base cations and alkalinity due to the presence of metamorphic rocks in the bedrock. Concentrations of phosphorus, organic carbon, organic nitrogen, and chlorophyll-a were highest in forest lakes and decreased with decreasing density of vegetation and soil cover in the catchment areas. Concentrations of nitrate showed an opposite trend. Several exceptions to these general patterns in chemical and biological composition were due to exceptional geology or hydrology of the lake catchments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bombówna, M. 1965. Hydrochemical investigations of the Morskie Oko lake and the Czarny Staw lake above the Morskie Oko in the Tatra Mountains, pp. 7–11. In: Starmach, K. (ed.) Limnological investigations in the Tatra Mountains and Dunajec River Basin, Komitet Zagospodarzovania Ziem Górskych, Zeszyt No. 11, Polish Academy of Sciences, Kraków.

    Google Scholar 

  • Bombówna, M. & Wojtan, K. 1996. Zmiany skladu chemicznego wody jezior tatrzańskich na przestrzeni lat [Temporal changes in the water chemistry of the Tatra lakes], pp. 56–59. In: Krzan, Z. (ed.) Przyroda Tatrzanskiego Parku Narodowego a Czlowiek, Tom 3, Wplyw czlowieka, TPN, Kraków-Zakopane, Poland.

    Google Scholar 

  • Catalan, J., Ballesteros, E., Garcia, E., Palau, A. & Camarero, L. 1993. Chemical composition of disturbed and undisturbed high-mountain lakes in the Pyrenees: A reference for acidified sites. Water Res. 27: 133–141.

    Article  CAS  Google Scholar 

  • Driscoll, C.T. 1984. A procedure for the fractionation of aqueous aluminum in dilute acidic waters. Intern. J. Environ. Anal. Chem. 16: 267–284.

    CAS  Google Scholar 

  • Fott, J., Pražáková, M., Stuchlík, E. & Stuchlíková, Z. 1994. Acidifcation of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia 274: 37–47.

    Article  CAS  Google Scholar 

  • Fott, J., Stuchlík, E., Stuchlíková, Z., Straškrabová, V., Kopáček J. & Šimek, K. 1992. Acidification of lakes in the Tatra Mountains (Czechoslovakia) and its ecological consequences. Doc. Ist. Ital. Idrobiol. 32: 69–81.

    Google Scholar 

  • Hejzlar, J. & Kopáček, J. 1990. Determination of low chemical oxygen demand values in water by the dichromate semi-micro method. Analyst 115: 1463–1467.

    Article  CAS  Google Scholar 

  • Henriksen, A. 1979. A simple approach for identifying and measuring acidification of freshwater. Nature 278: 542–545.

    Article  CAS  Google Scholar 

  • Henriksen, A. & Brakke, D.F. 1988. Increasing contributions of nitrogen to the acidity of surface waters in Norway. Water Air Soil Poll. 42: 183–201.

    Article  CAS  Google Scholar 

  • Hořická, Z., Stuchlík, E., Hudec, I., Černý, M., & Fott, & 2006. Acidification and the structure of crustacean zooplankton in mountain lakes: The Tatra Mountains (Slovakia, Poland). Biologia, Bratislava 61,Suppl. 18: S121–S134.

    Google Scholar 

  • Kopáček, J. & Blažka, P. 1994. Ammonium uptake in alpine streams in the High Tatra Mountains (Slovakia). Hydrobiologia 294: 157–165.

    Article  Google Scholar 

  • Kopáček, J., Hardekopf, D., Majer, M., Pšenáková, P., Stuchlík, E. & Veselý, J. 2004. Response of alpine lakes and soils to changes in acid deposition: the MAGIC model applied to the Tatra Mountain region, Slovakia-Poland. J. Limnol. 63: 143–156.

    Google Scholar 

  • Kopáček, J. & Hejzlar, J. 1993. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int. J. Environ. Anal. Chem. 53: 173–183.

    Google Scholar 

  • Kopáček, J. & Procházková, L. 1993. Semi-micro determination of ammonia in water by the rubazoic acid method. Int. J. Environ. Anal. Chem. 53: 243–248.

    Google Scholar 

  • Kopáček, J., Procházková, L., Stuchlík, E. & Blažka, P. 1995. The nitrogen-phosphorus relationship in mountain lakes: Influence of atmospheric input, watershed, and pH. Limnol. Oceanogr. 40: 930–937.

    Article  Google Scholar 

  • Kopáček, J. & Stuchlík, E. 1994. Chemical characteristics of lakes in the High Tatra Mountains, Czechoslovakia. Hydrobiologia 274: 49–56.

    Article  Google Scholar 

  • Kopáček, J., Stuchlík, E., Fott, J., Veselý, J. & Hejzlar, J. 1998. Reversibility of acidification of mountain lakes after reduction in nitrogen and sulphur emissions in Central Europe. Limnol. Oceanogr. 43: 357–361.

    Article  Google Scholar 

  • Kopáček, J., Stuchlík, E. & Hardekopf, D. 2006. Chemical composition of the Tatra Mountain lakes: Recovery from acidification. Biologia, Bratislava 61,Suppl. 18: S21–S33.

    Google Scholar 

  • Kopáček, J., Stuchlík, E., Straškrabová, V. & Pšenáková, P. 2000. Factors governing nutrient status of mountain lakes in the Tatra Mountains. Freshwater Biol. 43: 369–383.

    Article  Google Scholar 

  • Kopáček, J., Stuchlík, E., Vyhnálek, V. & Závodský, D. 1996. Concentration of nutrients in selected lakes in the High Tatra Mountains, Slovakia: Effect of season and watershed. Hydrobiologia 319: 47–55.

    Article  Google Scholar 

  • Mackereth, F.J.H., Heron, J. & Talling, J.F. 1978. Water analyses: some revised methods for limnologists. FBA Scientific Publications No 36, 120 pp.

  • Marchetto, A., Mosello, R., Psenner, R., Bendetta, G., Boggero, A., Tait, D. & Tartari, G.A. 1995. Factors affecting water chemistry of alpine lakes. Aquat. Sci. 57: 81–89.

    Article  Google Scholar 

  • Murphy, J. & Riley, J.P. 1962. A modified single-solution method for the determination of phosphate in natural waters. Analyt. Chim. Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Procházková, L. 1959. Bestimmung der Nitrate im Wasser. Z. Anal. Chem. 167: 254–260.

    Article  Google Scholar 

  • Procházková, L. 1960. Einfluss der Nitrate und Nitrite auf die Bestimmung des organischen Stickstoffs und Ammoniums im Wasser. Arch. Hydrobiol. 56: 179–185.

    Google Scholar 

  • Psenner, R. & Catalan, J. 1994. Chemical composition of lakes in crystaline basins: a combination of atmospheric deposition, geologic background, biological activity and human action, pp. 255–314. In: Margalef, R. (ed.) Limnology now: A paradigm of planetary problems, Elsevier Science, Amsterdam.

    Google Scholar 

  • Sacherová, V., Kršková, R., Stuchlík, E., Hořická, Z., Hudec, I. & Fott, J. 2006. Long-term change of the littoral Cladocera in the Tatra Mountain lakes through a major acidification event. Biologia, Bratislava 61,Suppl. 18: S109–S119.

    Google Scholar 

  • Schindler, D.W. 1986. The significance of in-lake alkalinity production. Water Air Soil Poll. 30: 931–944.

    Article  CAS  Google Scholar 

  • Stangenberg, M. 1938. Zur Hydrochemie der Tatraseen. Verh. Int. Verein. Limnol. 8: 211–220.

    Google Scholar 

  • Stoddard, J.L. 1994. Long-term changes in watershed retention of nitrogen, pp. 223–284. In: Baker, L.A. (ed.) Environmental chemistry of lakes and reservoirs, Adv. Chem. 237, ACS.

  • Strickland, J.D.H. & Parsons, T.R. 1968. A practical handbook of seawater analysis. Bulletin 167. Fisheries Research Board of Canada, 311 pp.

  • Stuchlík, E., Stuchlíková, Z., Fott, J., Růžička, L. & Vrba, J. 1985. Vliv kyselých srážek na vody na území tatranského národního parku [Effect of acid precipitation on waters of the TANAP territory]. Zborník TANAP 26: 173–211.

    Google Scholar 

  • Vološčuk, I. (ed.) 1994. Tatranský národný park [Tatra National Park]. Gradus, Martin, 551 pp.

  • Vyhnálek, V., Fott, J. & Kopáček, J. 1994. Chlorophyllphosphorus relationship in acidified lakes of the High Tatra Mountains (Slovakia). Hydrobiologia 274: 49–56.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuchlík, E., Kopáček, J., Fott, J. et al. Chemical composition of the Tatra Mountain lakes: Response to acidification. Biologia 61 (Suppl 18), S11–S20 (2006). https://doi.org/10.2478/s11756-006-0116-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-006-0116-7

Key words