Abstract
Data from two surveys of the Tatra Mountain lakes (Slovakia and Poland) performed in the autumns of 1984 (53 lakes) and 1993 or 1994 (92 lakes) were used to estimate spatial variability in water chemistry in this lake district during the period of maximum European acid deposition. The ionic content of the lakes was generally low, with conductivity (at 20°C) ranging from 1.1 to 4.7 mS m−1 and 23% of the lakes had a depleted carbonate buffering system. Major factors governing differences in lake-water chemistry were bedrock composition and amount of soil and vegetation in their catchment areas. Compared to lakes in the predominantly granitic central part of the Tatra Mountains, lakes in the West Tatra Mountains had higher concentrations of base cations and alkalinity due to the presence of metamorphic rocks in the bedrock. Concentrations of phosphorus, organic carbon, organic nitrogen, and chlorophyll-a were highest in forest lakes and decreased with decreasing density of vegetation and soil cover in the catchment areas. Concentrations of nitrate showed an opposite trend. Several exceptions to these general patterns in chemical and biological composition were due to exceptional geology or hydrology of the lake catchments.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bombówna, M. 1965. Hydrochemical investigations of the Morskie Oko lake and the Czarny Staw lake above the Morskie Oko in the Tatra Mountains, pp. 7–11. In: Starmach, K. (ed.) Limnological investigations in the Tatra Mountains and Dunajec River Basin, Komitet Zagospodarzovania Ziem Górskych, Zeszyt No. 11, Polish Academy of Sciences, Kraków.
Bombówna, M. & Wojtan, K. 1996. Zmiany skladu chemicznego wody jezior tatrzańskich na przestrzeni lat [Temporal changes in the water chemistry of the Tatra lakes], pp. 56–59. In: Krzan, Z. (ed.) Przyroda Tatrzanskiego Parku Narodowego a Czlowiek, Tom 3, Wplyw czlowieka, TPN, Kraków-Zakopane, Poland.
Catalan, J., Ballesteros, E., Garcia, E., Palau, A. & Camarero, L. 1993. Chemical composition of disturbed and undisturbed high-mountain lakes in the Pyrenees: A reference for acidified sites. Water Res. 27: 133–141.
Driscoll, C.T. 1984. A procedure for the fractionation of aqueous aluminum in dilute acidic waters. Intern. J. Environ. Anal. Chem. 16: 267–284.
Fott, J., Pražáková, M., Stuchlík, E. & Stuchlíková, Z. 1994. Acidifcation of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia 274: 37–47.
Fott, J., Stuchlík, E., Stuchlíková, Z., Straškrabová, V., Kopáček J. & Šimek, K. 1992. Acidification of lakes in the Tatra Mountains (Czechoslovakia) and its ecological consequences. Doc. Ist. Ital. Idrobiol. 32: 69–81.
Hejzlar, J. & Kopáček, J. 1990. Determination of low chemical oxygen demand values in water by the dichromate semi-micro method. Analyst 115: 1463–1467.
Henriksen, A. 1979. A simple approach for identifying and measuring acidification of freshwater. Nature 278: 542–545.
Henriksen, A. & Brakke, D.F. 1988. Increasing contributions of nitrogen to the acidity of surface waters in Norway. Water Air Soil Poll. 42: 183–201.
Hořická, Z., Stuchlík, E., Hudec, I., Černý, M., & Fott, & 2006. Acidification and the structure of crustacean zooplankton in mountain lakes: The Tatra Mountains (Slovakia, Poland). Biologia, Bratislava 61,Suppl. 18: S121–S134.
Kopáček, J. & Blažka, P. 1994. Ammonium uptake in alpine streams in the High Tatra Mountains (Slovakia). Hydrobiologia 294: 157–165.
Kopáček, J., Hardekopf, D., Majer, M., Pšenáková, P., Stuchlík, E. & Veselý, J. 2004. Response of alpine lakes and soils to changes in acid deposition: the MAGIC model applied to the Tatra Mountain region, Slovakia-Poland. J. Limnol. 63: 143–156.
Kopáček, J. & Hejzlar, J. 1993. Semi-micro determination of total phosphorus in fresh waters with perchloric acid digestion. Int. J. Environ. Anal. Chem. 53: 173–183.
Kopáček, J. & Procházková, L. 1993. Semi-micro determination of ammonia in water by the rubazoic acid method. Int. J. Environ. Anal. Chem. 53: 243–248.
Kopáček, J., Procházková, L., Stuchlík, E. & Blažka, P. 1995. The nitrogen-phosphorus relationship in mountain lakes: Influence of atmospheric input, watershed, and pH. Limnol. Oceanogr. 40: 930–937.
Kopáček, J. & Stuchlík, E. 1994. Chemical characteristics of lakes in the High Tatra Mountains, Czechoslovakia. Hydrobiologia 274: 49–56.
Kopáček, J., Stuchlík, E., Fott, J., Veselý, J. & Hejzlar, J. 1998. Reversibility of acidification of mountain lakes after reduction in nitrogen and sulphur emissions in Central Europe. Limnol. Oceanogr. 43: 357–361.
Kopáček, J., Stuchlík, E. & Hardekopf, D. 2006. Chemical composition of the Tatra Mountain lakes: Recovery from acidification. Biologia, Bratislava 61,Suppl. 18: S21–S33.
Kopáček, J., Stuchlík, E., Straškrabová, V. & Pšenáková, P. 2000. Factors governing nutrient status of mountain lakes in the Tatra Mountains. Freshwater Biol. 43: 369–383.
Kopáček, J., Stuchlík, E., Vyhnálek, V. & Závodský, D. 1996. Concentration of nutrients in selected lakes in the High Tatra Mountains, Slovakia: Effect of season and watershed. Hydrobiologia 319: 47–55.
Mackereth, F.J.H., Heron, J. & Talling, J.F. 1978. Water analyses: some revised methods for limnologists. FBA Scientific Publications No 36, 120 pp.
Marchetto, A., Mosello, R., Psenner, R., Bendetta, G., Boggero, A., Tait, D. & Tartari, G.A. 1995. Factors affecting water chemistry of alpine lakes. Aquat. Sci. 57: 81–89.
Murphy, J. & Riley, J.P. 1962. A modified single-solution method for the determination of phosphate in natural waters. Analyt. Chim. Acta 27: 31–36.
Procházková, L. 1959. Bestimmung der Nitrate im Wasser. Z. Anal. Chem. 167: 254–260.
Procházková, L. 1960. Einfluss der Nitrate und Nitrite auf die Bestimmung des organischen Stickstoffs und Ammoniums im Wasser. Arch. Hydrobiol. 56: 179–185.
Psenner, R. & Catalan, J. 1994. Chemical composition of lakes in crystaline basins: a combination of atmospheric deposition, geologic background, biological activity and human action, pp. 255–314. In: Margalef, R. (ed.) Limnology now: A paradigm of planetary problems, Elsevier Science, Amsterdam.
Sacherová, V., Kršková, R., Stuchlík, E., Hořická, Z., Hudec, I. & Fott, J. 2006. Long-term change of the littoral Cladocera in the Tatra Mountain lakes through a major acidification event. Biologia, Bratislava 61,Suppl. 18: S109–S119.
Schindler, D.W. 1986. The significance of in-lake alkalinity production. Water Air Soil Poll. 30: 931–944.
Stangenberg, M. 1938. Zur Hydrochemie der Tatraseen. Verh. Int. Verein. Limnol. 8: 211–220.
Stoddard, J.L. 1994. Long-term changes in watershed retention of nitrogen, pp. 223–284. In: Baker, L.A. (ed.) Environmental chemistry of lakes and reservoirs, Adv. Chem. 237, ACS.
Strickland, J.D.H. & Parsons, T.R. 1968. A practical handbook of seawater analysis. Bulletin 167. Fisheries Research Board of Canada, 311 pp.
Stuchlík, E., Stuchlíková, Z., Fott, J., Růžička, L. & Vrba, J. 1985. Vliv kyselých srážek na vody na území tatranského národního parku [Effect of acid precipitation on waters of the TANAP territory]. Zborník TANAP 26: 173–211.
Vološčuk, I. (ed.) 1994. Tatranský národný park [Tatra National Park]. Gradus, Martin, 551 pp.
Vyhnálek, V., Fott, J. & Kopáček, J. 1994. Chlorophyllphosphorus relationship in acidified lakes of the High Tatra Mountains (Slovakia). Hydrobiologia 274: 49–56.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Stuchlík, E., Kopáček, J., Fott, J. et al. Chemical composition of the Tatra Mountain lakes: Response to acidification. Biologia 61 (Suppl 18), S11–S20 (2006). https://doi.org/10.2478/s11756-006-0116-7
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.2478/s11756-006-0116-7

