Skip to main content
Log in

Secondary metabolites during ontogenetic phase of reproductive structures in Hypericum maculatum

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The distribution patterns of flavonoids hyperoside, isoquercitrin, quercitrin, quercetin, I3,II8-biapigenin and naphtodianthrones hypericin and pseudohypericin were studied in reproductive structures during ontogenetic phase of flowering in Hypericum maculatum Crantz. Considerable differences in the content of these secondary metabolites, in the particular flower parts were found. The content of all the metabolites studied is stable during the whole period of flowering in green flower parts (sepals). In petals, stamens and pistils their content undergoes considerable change associated with the biological functions of particular metabolites. The most conspicuous changes during ontogenetic phase of flowering were the decrease of hyperoside and isoquercitrin content in petals (average content in buds 1.589 mg g−1 dry weight, average content in overblown flowers 0.891 mg g−1 dry weight), the decrease of the I3,II8-biapigenin content in stamens (in buds 1.189 mg g−1 dry weight, in overblown flowers 0.319 mg g−1 dry weight), and the increase of hypericin and pseudohypericin content in both petals (total average content of hypericins in the buds 0.547 mg g−1 dry weight; in overblown flowers 0.792 mg g−1 dry weight) and stamens (in buds 0.189 mg g−1 dry weight; in overblown flowers 0.431 mg g−1 dry weight). Hypericins are absent in the pistil. The flavonoids hyperoside and isoquercitrin, the content of which decreased during ontogenetic phase of flowering, reach the highest contents in the pistil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avato, P. & Guglielmi, G. 2004. Determination of major constituents in St. John’s wort under different extraction conditions. Pharm. Biol. 42: 83–89.

    CAS  Google Scholar 

  • Bagdonaite, E. & Radušiene, J. 2002. Analysis of variation of phenotypical characters in Hypericum maculatum Crantz wild populations. Biologija, pp. 46–49.

  • Brantner, A., Kartnig, Th. & Ouehenberger, F. 1994. Vergleichende phytochemische Untersuchungen an Hypericum perforatum L. und Hypericum maculatum Crantz. Sci. Pharm. 62: 261–276.

    CAS  Google Scholar 

  • Brockmann, H. & Sanne, W. 1957. Zur Kenntnis des Hypericins und Pseudohypericins. Chem. Ber. 90: 2480–2491.

    CAS  Google Scholar 

  • Ciccarelli, D., Andreucci, A.C. & Pagni, A.M. 2001. The ”black nodules“ of Hypericum perforatum L. subsp. perforatum: morphological, anatomical and histochemical studies during the course of ontogenesis. Israel J. Plant Sci. 49: 33–40.

    Google Scholar 

  • Geiger, H. 1994. Biflavonoids and triflavonoids, pp. 95–115. In: Harborne, J.B. (ed.), The flavonoids. Advances in research since 1985, Chapman & Hall, London.

    Google Scholar 

  • Hölzl, J. & Ostrowski, H. 1987. Johanniskraut (Hypericum perforatum L.) HPLC-Analyse der wichtigen Inhaltsstoffe und deren Variabilität in einer Population. Deutsche Apoth.-Ztg., Berlin, 127: 1227–1230.

    Google Scholar 

  • Hölzl, J. & Petersen, M. 2003. Chemical constituents of Hypericum ssp., pp. 77–93. In: Ernst, E. (ed.), Hypericum. The genus Hypericum. Taylor and Francis, London & New York.

    Google Scholar 

  • Jacobs, M. & Rubery, P.H. 1988. Naturally occurring auxin transport regulation. Science 241: 346–349.

    CAS  PubMed  Google Scholar 

  • Kartnig, Th., Heydel, B. & Lässer, L. 1997. Johanniskraut aus Schweizer Arzneipflanzenkultur. Agrarforschung 4: 299–302.

    Google Scholar 

  • Kaul, R. 2000. Johanniskraut: Botanik, Inhaltsstoffe, Qualitätskontrolle, Pharmakologie, Toxikologie und Klinik. Wiss. Verl.-Ges., Stuttgart, 187pp.

    Google Scholar 

  • Kireeva, T.B., Sharanov, U.L. & Letchamo, W. 1999. Biochemical and eco-physiological studies on Hypericum spp., pp. 467–468. In: Janick, J. (ed.), Perspectives on new crops and new uses, ASHS Press, Alexandria.

    Google Scholar 

  • Kitanov, G.M. 2001. Hypericin and pseudohypericin in some Hypericum species. Biochem. Syst. Ecol. 29: 171–178.

    Article  PubMed  CAS  Google Scholar 

  • Kment, V., Pěnková, I. & Starý, F. 1990. Matečné rostliny drogy Herba hyperici. Českosl. Farm. 39: 323–326.

    CAS  Google Scholar 

  • Leifertová, I. 1966. Studium flavonoidů v československých druzích rodu Hypericum. Preslia 38: 386–390.

    Google Scholar 

  • Maleš, Z., Plazibat, M., Vundać, V. B., Zuntar, I. & Pilepić, K.H. 2004. Thin-layer chromatographic analysis of flavonoids, phenolic acids, and amino acids in some Croatian Hypericum taxa. J. Plan. Chromatogr. 17: 280–285.

    Google Scholar 

  • Mártonfi, P. & Repčák, M. 1994. Secondary metabolites during flower ontogenesis of Hypericum perforatum L. Zahradnictví 21: 37–44.

    Google Scholar 

  • Mártonfi, P., Repčák M. & Mihoková, L. 1996. Hypericum maculatum Crantz subsp. maculatum × H. perforatum L. (Hypericaceae): Corroboration of natural hybridization by secondary metabolite analysis. Folia Geobot. Phytotax. 31: 245–250.

    Google Scholar 

  • Mártonfi, P., Repčák, M., Ciccarelli, D. & Garbari, F. 2001. Hypericum perforatum L. — chemotype without rutin from Italy. Biochem. Syst. Ecol. 29: 659–661.

    Article  PubMed  Google Scholar 

  • Michaluk, A. 1961. Badania nad flavonoidami w gatunkach rodzaju Hypericum II. Diss. Pharm. 13: 73–79.

    CAS  Google Scholar 

  • Onelli, E., Rivetta, A., Giorgi, A., Bignami, M., Cocucci, M. & Patrignani, G. 2002. Ultrastructural studies on the developing secretory nodules of Hypericum perforatum. Flora 197: 92–102.

    Google Scholar 

  • Pietta, P., Gardana, C. & Pietta, A. 2001. Comparative evaluation of St. John’s wort from different Italian regions. Farmaco 56: 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Radušiene, J. & Bagdonaite, E. 2002. Phenotypic variation in Hypericum perforatum L. and H. maculatum Crantz wild populations in Lithuania. J. Herbs Spices Med. Plants 9: 345–351.

    Article  Google Scholar 

  • Repčák, M. & Mártonfi, P. 1997. The localization of secondary substances in Hypericum perforatum flower. Biologia, Bratislava 52: 91–94.

    Google Scholar 

  • Robson, N.K.B. 2002. Studies in the genus Hypericum L. (Guttiferae) 4(2). Section 9. Hypericum sensu lato (part 2): subsection 1. Hypericum series 1. Hypericum. Bull. Nat. Hist. Mus. London, Bot. 32: 61–123.

    Article  Google Scholar 

  • Seidler-Łozykowska, K. 2003. Secondary metabolites content of Hypericum sp. in different stages and plant parts, pp. 100–105. In: Ernst. E. (ed.): Hypericum. The genus Hypericum. Taylor and Francis, London & New York.

    Google Scholar 

  • Seidler-Łozykowska, K., Dabrowska, J. & Zygmunt, B. 1999. Content of active substances in herb of St. John’s wort (Hypericum perforatum L.) cvar. Topaz in different vegetation phases. Herba Pol. 45: 169–172.

    Google Scholar 

  • Sirvent, T.M., Walker, L., Vance, N. & Gibson, D.M. 2002. Variation in hypericins from wild populations of Hypericum perforatum L. in the Pacific Northwest of the U.S.A. Econ. Bot. 56: 41–48.

    Article  Google Scholar 

  • Southwell, I.A., & Bourke, C.A. 2001. Seasonal variation in hypericin content of Hypericum perforatum L. (St. John’s wort). Phytochem. 56: 437–441.

    Article  CAS  Google Scholar 

  • Tekel’ová, D., Repčák, M., Zemková, E. & Tóth, J. 2000. Quantitative changes of dianthrones, hyperforin and flavonoids content in the flower ontogenesis of Hypericum perforatum. Planta Med. 66: 778–780.

    Article  PubMed  Google Scholar 

  • Umek, A., Kreft, S., Kartnig, Th. & Heydel, B. 1999. Quantitative phytochemical analyses of six Hypericum species growing in Slovenia. Planta Med. 65: 388–390.

    CAS  PubMed  Google Scholar 

  • Vogt, T. & Taylor, L.P. 1995. Flavonol 3-O-glycosyltransferases associated with Petunia pollen produce gametophyte-specific flavonol diglycosides. Plant Physiol. 108: 903–911.

    Article  PubMed  CAS  Google Scholar 

  • Walker, L., Sirvent, T., Gibson, D. & Vance, N. 2001. Regional differences in hypericin and pseudohypericin concentrations and five morphological traits among Hypericum perforatum plants in the northwestern United States. Can. J. Bot. 79: 1248–1255.

    Article  CAS  Google Scholar 

  • Ylstra, B., Touraev, A., Benito Moreno, R.M., Stöger, E., van Tunen, A.J., Vicente, O., Mol, J.N.M. & Heberle-Bors, E. 1992. Flavonols stimulate development, germination, and tube growth of tobacco pollen. Plant Physiol. 100: 902–907.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mártonfi, P., Repčák, M. & Mártonfiová, L. Secondary metabolites during ontogenetic phase of reproductive structures in Hypericum maculatum . Biologia 61, 473–478 (2006). https://doi.org/10.2478/s11756-006-0079-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-006-0079-8

Key words

Navigation