Skip to main content
Log in

Lithospermum officinale callus produces shikalkin

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

To study biosynthetic abilities of Lithospermum officinale, callus formation from young leaves and stems of the plant was induced on Linsmaier-Skoog medium supplemented with 2,4-D (10−6 M) and kinetin (10−5 M). Maintaining the calli on this medium resulted in polyphenolic compounds production. Their transfer onto White medium containing IAA (10−7 M) and kinetin (10−5 M) resulted in the production of a red naphthoquinonic pigment named shikalkin. Shikalkin production from callus cultures was suppressed on the White medium containing NAA instead of IAA. This observation indicates that both shikalkin and polyphenolic acids biosynthetic pathways exist in the L. officinale callus cells and a regulatory system counterbalances the ratio of shikalkin to polyphenolic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agata, I., Tsutomu, H., Nishibe, S. & Okuda, T. 1989. A tetrameric derivative of caffeic acid from Rabdosia japonica. Phytochem. 28: 2447–2450.

    Article  CAS  Google Scholar 

  • Chen, F.A., Cheng, H.W., Wu, A.B., Hsu, H.C. & Chen, C.Y. 1996. Kinetic studies of the photochemical decomposition of Alkannin/Shikonin enantiomers. Chem. Pharm.Bull. 44: 249–251.

    CAS  Google Scholar 

  • Chen, J.H. & Ho, C.T. 1997. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 45: 2374–2378.

    Article  CAS  Google Scholar 

  • De-Eknamkul, W. & Ellis, B.E. 1984. Rosmarinic acid production and growth characteristics of Anchusa officinalis cell suspension cultures. Planta Medica 25: 346–350.

    Google Scholar 

  • Fujita, Y., Hara, Y., Ogino, T. & Suga, C. 1981a. Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon. I. Effects of nitrogen sources on the production of shikonin derivatives. Plant Cell Rep. 1: 59–60.

    Article  CAS  Google Scholar 

  • Fujita, Y., Hara, T., Suga, C. & Morimoto, T. 1981b. Production of shikonin derivatives by cell suspension cultures of Lithospermum erythrorhizon. II. A new medium for the production of shikonin derivatives. Plant Cell Rep. 1: 61–63.

    Article  CAS  Google Scholar 

  • Gaisser, S. & Heide, L. 1996. Inhibition and regulation of shikonin biosynthesis in suspension cultures of Lithospermum. Phytochem. 41: 1065–1072.

    Article  CAS  Google Scholar 

  • John, M., Gumbinger, H. & Winterhoff, H. 1990. Oxidation products of caffeic acid as model substances for the antigonadotropic activity of plant extracts. Planta Medica 56: 14–18.

    PubMed  CAS  Google Scholar 

  • Kelley, C.J., Mahajan, J.R., Brooks, L.C., Neubert, L.A., Breneman, W.R. & Carmack, M. 1975. Polyphenolic acids of Lithospermum ruderale. Isolation and structure determination of lithospermic acid. J. Org. Chem. 40: 1804–1815.

    Article  CAS  Google Scholar 

  • Khan, H.A., Chandrasekharan, I. & Ghanim, A. 1983. Naphthazarins from Arnebia hispidissima. Phytochemistry 22: 614–615.

    Article  CAS  Google Scholar 

  • Maloney, V. 2004. Plant metabolomics. BioTeach J. 2: 92–99.

    Google Scholar 

  • Matsuno, M., Nagatsu, A., Ogihara, Y. & Mizukami, H. 2001. Synthesis of 2-0-(4-coumaroyl)-3-(4-hydroxy phenyl) lactic acid, an important intermediate of rosmarinic acid biosynthesis. Chem. Pharm. Bull. 49: 1644–1646.

    Article  PubMed  CAS  Google Scholar 

  • Mizukami, H., Tabira, Y. & Ellis, B. 1993. Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Rep. 12: 706–709.

    Article  CAS  Google Scholar 

  • Mizukami, H., Ogawa, T., Ohashi, & H. Ellis, B. 1992. Induction of rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures by yeast extract. Plant Cell Rep. 11: 480–483.

    Article  CAS  Google Scholar 

  • Nahrstedt, A., Albrecht, M., Wray, V., John, M., Winterhoff, H. & Kemper, F. 1990. Structure of compounds with antigonadotropic activity obtained by in vitro oxidation of caffeic acid. Planta Medica 56: 395–398.

    PubMed  CAS  Google Scholar 

  • Papageorgiou, V.P., Assimopoulou, A.N., Couladouros, E.A., Hepworth, D. & Nicolaou, K.C. 1999. The chemistry and biology of alkannin, shikonin, and related naphthazarin natural products. Angew. Chem. Int. Ed. 38: 270–300.

    Article  Google Scholar 

  • Shukla, Y.N., Tandon, J.S., Bhakuni, D.S. & Dhar, M.M. 1971. Naphthaquinones of Arnebia Nobilis. Phytochem. 10: 1909–1915.

    Article  CAS  Google Scholar 

  • Srinivasan, V. & Ryu, D.D.Y. 1993. Improvement of shikonin productivity in Lithospermum erythrorhizon cell culture by alternating carbon and nitrogen feeding strategy. Biotech. Bioeng. 42: 793–799.

    Article  CAS  Google Scholar 

  • Tanaka, T., Morimoto, S., Nishioka, I., Yokozawa, T. & Oura, H. 1989. Magnesium and ammonium-potassium Lithospermates B, the active principles having a uremia-preventive effect from Salvia miltiorrhiza. Chem. Pharm. Bull. 37: 340–344.

    CAS  Google Scholar 

  • Tanaka, S., Tajima, M., Tsukada, M. & Tabata, M. 1986. A comparative study on anti-inflammatory activities of the enantiomers, shikonin and alkannin. J. Natural Products 49: 466–469.

    Article  CAS  Google Scholar 

  • Van Der Vijver, L.M. & Gerritsma, K.W. 1975. Behavior of 7-methyljuglone and two related naphthoquinones on silica gel exposed to air. J. Chromatography 114: 443–450.

    Article  Google Scholar 

  • Williams, D.H. & Fleming, I. 1980. Spectroscopic methods in organic chemistry, 3rd ed. McGraw-Hill Book Company (UK), pp. 22–31.

    Google Scholar 

  • Winterhoff, H., Gumbinger, H. & Sourgens, H. 1988. On the antigonadotropic activity of Lithospermum and Lycopus species and some of their phenolic constituents. Planta Medica 23: 101–106.

    Google Scholar 

  • Winterhoff, H., Sourgens, H. & Kemper, F.H. 1983. Antihormonal effects of plant extracts. Pharmacodynamic effects of Lithospermum officinale on the thyroid gland of rats; comparison with the effects of iodide. Hormone Metabolism Research. 15: 503–507.

    Article  CAS  Google Scholar 

  • Xu-Qing, F. & De-Wei, L. 1999. Stimulation of shikonin production by combined fungal elicitation and in situ extraction in suspension culture of Arnebia euchroma. Enzyme Microb. Technol. 24: 243–246.

    Article  Google Scholar 

  • Yamamoto, H., Inoue, K. & Yazaki, K. 2000. Caffeic acid oligomers in Lithospermum erythrorhizon cell suspension cultures. Phytochem. 738: 3–15.

    CAS  Google Scholar 

  • Yamamoto, H., Zhao, P., Yazaki, K. & Inoue, K. 2002. Regulation of lithospermic acid B and shikonin production in Lithospermum erythrorhizon cell suspension cultures. Chem. Pharm. Bull. 50: 1086–1090.

    Article  PubMed  CAS  Google Scholar 

  • Yazaki, K., Fukui, H., Nishikawa, Y. & Tabata, M. 1997. Measurement of phenolic compounds and their effect on shikonin production in Lithospermum cultured cells. Biosci. Biotech. Biochem. 61: 1674–1678.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamahldin Haghbeen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghbeen, K., Mozaffarian, V., Ghaffari, F. et al. Lithospermum officinale callus produces shikalkin. Biologia 61, 463–467 (2006). https://doi.org/10.2478/s11756-006-0077-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-006-0077-x

Key words

Abbreviations

Navigation