Advertisement

Chemical Papers

, Volume 68, Issue 12, pp 1755–1766 | Cite as

Effects of temperature and concentration on mechanism and kinetics of thermally induced deposition from coffee extracts

  • Marek Kroslak
  • Massimo Morbidelli
  • Jan Sefcik
Original Paper

Abstract

Production of soluble (instant) coffee powders typically involves extraction of roasted coffee by water followed by evaporation in order to concentrate extracts before spray or freeze drying to produce dry coffee powder. In the course of evaporation, deposition of dissolved material from coffee extracts is a major cause of fouling at the heat exchange surfaces of evaporators. Therefore, in order to improve the design and optimization of evaporation processes of coffee extracts, better understanding of the deposition mechanism and kinetics is needed. In this study, optical waveguide lightmode spectroscopy (OWLS) was used to monitor the initial formation of nanometer scale deposits on surfaces exposed to coffee extracts. OWLS measurements were complemented by light scattering from extract solutions, gravimetry of macroscopic deposits, and scanning electron microscopy imaging of deposited layers. Primary molecular-scale layers of about 1 mg m−2 were rapidly formed in the first stage of deposition, even at ambient temperature, followed by the secondary deposition with kinetics strongly dependent on temperature. Secondary deposition rates were low and largely independent of the extract concentration at ambient temperature, but became strongly dependent on the extract concentration at elevated temperatures. In particular, activation energies for the deposition between 25°C and 70°C were much higher for the original extract (13.3 mass %, solids) than for diluted extracts (up to 1.3 mass %, solids). Furthermore, heating of the original extracts above 60°C resulted in rapid aggregation of suspended macromolecules into large clusters, while only gradual aggregation was observed in diluted extracts.

Keywords

coffee extracts deposition aggregation fouling evaporation heat exchange 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anema, S. G. (2000). Effect of milk concentration on the irreversible thermal denaturation and disulfide aggregation of β-lactoglobulin. Journal of Agricultural and Food Chemistry, 48, 4168–4175. DOI: 10.1021/jf991173e.CrossRefGoogle Scholar
  2. Burchard, W. (2001). Structure formation by polysaccharides in concentrated solution. Biomacromolecules, 2, 342–353. DOI: 10.1021/bm0001291.CrossRefGoogle Scholar
  3. Changani, S. D., Belmar-Beiny, M. T., & Fryer, P. J. (1997). Engineering and chemical factors associated with fouling and cleaning in milk processing. Experimental Thermal and Fluid Science, 14, 392–406. DOI: 10.1016/s0894-1777(96)00141-0.CrossRefGoogle Scholar
  4. De Feijter, J. A., Benjamins, J., & Veer, F. A. (1978). Ellipsometry as a tool to study adsorption behavior of synthetic and biopolymers at air-water-interface. Biopolymers, 17, 1759–1772. DOI: 10.1002/bip.1978.360170711.CrossRefGoogle Scholar
  5. de Jong, P. (1997). Impact and control of fouling in milk processing. Trends in Food Science & Technology, 8, 401–405. DOI: 10.1016/s0924-2244(97)01089-3.CrossRefGoogle Scholar
  6. Extrand, C. W. (1994). Spin coating of very thin polymer films. Polymer Engineering & Science, 34, 390–394. DOI: 10.1002/pen.760340503.CrossRefGoogle Scholar
  7. Grancic, P., Illeova, V., Polakovic, M., & Sefcik, J. (2012). Thermally induced inactivation and aggregation of urease: Experiments and population balance modelling. Chemical Engineering Science, 70, 14–21. DOI: 10.1016/j.ces.2011.07.050.CrossRefGoogle Scholar
  8. Griesser, H. J., Hartley, P. G., McArthur, S. L., McLean, K. M., Meagher, L., & Thissen, H. (2002). Interfacial properties and protein resistance of nano-scale polysaccharide coatings. Smart Materials & Structures, 11, 652–661. DOI: 10.1088/0964-1726/11/5/305.CrossRefGoogle Scholar
  9. Höök, F., Vörös, J., Rodahl, M., Kurrat, R., Böni, P., Ramsden, J. J., Textor, M., Spencer, N. D., Tengvall, P., Gold, J., & Kasemo, B. (2002). A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids and Surfaces B: Biointerfaces, 24, 155–170 DOI: 10.1016/s0927-7765(01)00236-3.CrossRefGoogle Scholar
  10. Huang, N. P. (2002). Biochemical interactions of surface-bound PEG copolymers. PhD thesis, ETH, Zurich, Switzerland. DOI: 10.3929/ethz-a-004391212.Google Scholar
  11. Hunter, R. J. (2001). Foundations of colloid science. Oxford, UK: Oxford University Press.Google Scholar
  12. Javid, N., Vogtt, K., Roy, S., Hirst, A. R., Hoell, A., Hamley, I. W., Ulijn, R. V., & Sefcik, J. (2011). Supramolecular structures of enzyme clusters. The Journal of Physical Chemistry Letters, 2, 1395–1399. DOI: 10.1021/jz200446j.CrossRefGoogle Scholar
  13. Kosmulski, M. (2001). Chemical properties of material surfaces. New York, NY, USA: Marcel Dekker.CrossRefGoogle Scholar
  14. Kroslak, M., Sefcik, J., & Morbidelli, M. (2007). Effects of temperature, pH and salt concentration on β-lactoglobulin deposition kinetics studied by optical waveguide lightmode spectroscopy. Biomacromolecules, 8, 963–970. DOI: 10.1021/bm060293+.CrossRefGoogle Scholar
  15. Lavalle, P., Picart, C., Mutterer, J., Gergely, C., Reiss, H., Voegel, J. C., Senger, B., & Schaaf, P. (2004). Modeling the buildup of polyelectrolyte multilayer films having exponential growth. The Journal of Physical Chemistry B, 108, 635–648. DOI: 10.1021/jp035740j.CrossRefGoogle Scholar
  16. Le Bon, C., Nicolai, T., & Durand, D. (1999). Growth and structure of aggregates of heat-denatured β-lactoglobulin. International Journal of Food Science & Technology, 34, 451–465. DOI: 10.1046/j.1365-2621.1999.00310.x.CrossRefGoogle Scholar
  17. Nakanishi, K., Sakiyama, T., & Imamura, K. (2001). On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. Journal of Bioscience and Bioengineering, 91, 233–244. DOI: 10.1016/s1389-1723(01)80127-4.CrossRefGoogle Scholar
  18. Nellen, P. M. (1992). Integrated optical input grating couplers as direct chemo- and biosensors. PhD thesis, ETH, Zurich, Switzerland. DOI: 10.3929/ethz-a-000669222.Google Scholar
  19. Pasche, S., Vörös, J., Griesser, H. J., Spencer, N. D., & Textor, M. (2005). Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. The Journal of Physical Chemistry B, 109, 17545–17552. DOI: 10.1021/jp050431+.CrossRefGoogle Scholar
  20. Picart, C., Ladam, G., Senger, B., Voegel, J. C., Schaaf, P., Cuisinier, F. J. G., & Gergely, C. (2001). Determination of structural parameters characterizing thin films by optical methods: A comparison between scanning angle reflectometry and optical waveguide lightmode spectroscopy. The Journal of Chemical Physics, 115, 1086–1094. DOI: 10.1063/1.1375156.CrossRefGoogle Scholar
  21. Redgwell, R. J., Schmitt, C., Beaulieu, M., & Curti, D. (2005). Hydrocolloids from coffee: physicochemical and functional properties of an arabinogalactan-protein fraction from green beans. Food Hydrocolloids, 19, 1005–1015. DOI: 10.1016/j.foodhyd.2004.12.010.CrossRefGoogle Scholar
  22. Relkin, P. (1996). Thermal unfolding of β-lactoglobulin, α-lactalbumin, and bovine serum albumin. A thermodynamic approach. Critical Reviews in Food Science and Nutrition, 36, 565–601. DOI: 10.1080/10408399609527740.CrossRefGoogle Scholar
  23. Saini, S., Kurrat, R., Prenosil, J. E., & Ramsden, J. J. (1994). Temperature dependence of pyrolyzed sol-gel planar waveguide parameters. Journal of Physics D: Applied Physics, 27, 1134–1138. DOI: 10.1088/0022-3727/27/6/009.CrossRefGoogle Scholar
  24. Sava, N., Van der Plancken, I., Claeys, W., & Hendrickx, M. (2005). The kinetics of heat-induced structural changes of β-lactoglobulin. Journal of Dairy Science, 88, 1646–1653. DOI: 10.3168/jds.s0022-0302(05)72836-8.CrossRefGoogle Scholar
  25. Schubert, D. W. (1997). Spin coating as a method for polymer molecular weight determination. Polymer Bulletin, 38, 177–184. DOI: 10.1007/s002890050035.CrossRefGoogle Scholar
  26. Sefcik, J., Kroslak, M., & Morbidelli, M. (2002). Optical response of porous titania-silica waveguides to surface charging in electrolyte filled pores. Helvetica Chimica Acta, 85, 3508–3515. DOI: 10.1002/1522-2675(200210)85:10〈3508::AIDHLCA3508〉3.0.CO;2-M.CrossRefGoogle Scholar
  27. Van Tassel, P. R. (2003). Statistical mechanical modeling of protein adsorption. Materialwissenschaft und Werkstofftechnik, 34, 1129–1132. DOI: 10.1002/mawe.200300703.CrossRefGoogle Scholar
  28. Visser, J., & Jeurnink, Th. J. M. (1997). Fouling of heat exchangers in the dairy industry. Experimental Thermal and Fluid Science, 14, 407–424. DOI: 10.1016/s0894-1777(96)00142-2.CrossRefGoogle Scholar
  29. Vogtt, K., Javid, N., Alvarez, E., Sefcik, J., & Bellissent-Funel, M. C. (2011). Tracing nucleation pathways in protein aggregation by using small angle scattering methods. Soft Matter, 7, 3906–3914. DOI: 10.1039/c0sm00978d.CrossRefGoogle Scholar
  30. Vörös, J. (2004). The density and refractive index of adsorbing protein layers. Biophysical Journal, 87, 553–561. DOI: 10.1529/biophysj.103.030072.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2014

Authors and Affiliations

  1. 1.Institut für Chemie- und BioinginieurwissenschaftenETH ZurichZurichSwitzerland
  2. 2.Department of Chemical and Process EngineeringUniversity of StrathclydeGlasgowUK

Personalised recommendations