Skip to main content
Log in

Effects of temperature and concentration on mechanism and kinetics of thermally induced deposition from coffee extracts

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Production of soluble (instant) coffee powders typically involves extraction of roasted coffee by water followed by evaporation in order to concentrate extracts before spray or freeze drying to produce dry coffee powder. In the course of evaporation, deposition of dissolved material from coffee extracts is a major cause of fouling at the heat exchange surfaces of evaporators. Therefore, in order to improve the design and optimization of evaporation processes of coffee extracts, better understanding of the deposition mechanism and kinetics is needed. In this study, optical waveguide lightmode spectroscopy (OWLS) was used to monitor the initial formation of nanometer scale deposits on surfaces exposed to coffee extracts. OWLS measurements were complemented by light scattering from extract solutions, gravimetry of macroscopic deposits, and scanning electron microscopy imaging of deposited layers. Primary molecular-scale layers of about 1 mg m−2 were rapidly formed in the first stage of deposition, even at ambient temperature, followed by the secondary deposition with kinetics strongly dependent on temperature. Secondary deposition rates were low and largely independent of the extract concentration at ambient temperature, but became strongly dependent on the extract concentration at elevated temperatures. In particular, activation energies for the deposition between 25°C and 70°C were much higher for the original extract (13.3 mass %, solids) than for diluted extracts (up to 1.3 mass %, solids). Furthermore, heating of the original extracts above 60°C resulted in rapid aggregation of suspended macromolecules into large clusters, while only gradual aggregation was observed in diluted extracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anema, S. G. (2000). Effect of milk concentration on the irreversible thermal denaturation and disulfide aggregation of β-lactoglobulin. Journal of Agricultural and Food Chemistry, 48, 4168–4175. DOI: 10.1021/jf991173e.

    Article  CAS  Google Scholar 

  • Burchard, W. (2001). Structure formation by polysaccharides in concentrated solution. Biomacromolecules, 2, 342–353. DOI: 10.1021/bm0001291.

    Article  CAS  Google Scholar 

  • Changani, S. D., Belmar-Beiny, M. T., & Fryer, P. J. (1997). Engineering and chemical factors associated with fouling and cleaning in milk processing. Experimental Thermal and Fluid Science, 14, 392–406. DOI: 10.1016/s0894-1777(96)00141-0.

    Article  CAS  Google Scholar 

  • De Feijter, J. A., Benjamins, J., & Veer, F. A. (1978). Ellipsometry as a tool to study adsorption behavior of synthetic and biopolymers at air-water-interface. Biopolymers, 17, 1759–1772. DOI: 10.1002/bip.1978.360170711.

    Article  Google Scholar 

  • de Jong, P. (1997). Impact and control of fouling in milk processing. Trends in Food Science & Technology, 8, 401–405. DOI: 10.1016/s0924-2244(97)01089-3.

    Article  Google Scholar 

  • Extrand, C. W. (1994). Spin coating of very thin polymer films. Polymer Engineering & Science, 34, 390–394. DOI: 10.1002/pen.760340503.

    Article  CAS  Google Scholar 

  • Grancic, P., Illeova, V., Polakovic, M., & Sefcik, J. (2012). Thermally induced inactivation and aggregation of urease: Experiments and population balance modelling. Chemical Engineering Science, 70, 14–21. DOI: 10.1016/j.ces.2011.07.050.

    Article  CAS  Google Scholar 

  • Griesser, H. J., Hartley, P. G., McArthur, S. L., McLean, K. M., Meagher, L., & Thissen, H. (2002). Interfacial properties and protein resistance of nano-scale polysaccharide coatings. Smart Materials & Structures, 11, 652–661. DOI: 10.1088/0964-1726/11/5/305.

    Article  CAS  Google Scholar 

  • Höök, F., Vörös, J., Rodahl, M., Kurrat, R., Böni, P., Ramsden, J. J., Textor, M., Spencer, N. D., Tengvall, P., Gold, J., & Kasemo, B. (2002). A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids and Surfaces B: Biointerfaces, 24, 155–170 DOI: 10.1016/s0927-7765(01)00236-3.

    Article  Google Scholar 

  • Huang, N. P. (2002). Biochemical interactions of surface-bound PEG copolymers. PhD thesis, ETH, Zurich, Switzerland. DOI: 10.3929/ethz-a-004391212.

    Google Scholar 

  • Hunter, R. J. (2001). Foundations of colloid science. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Javid, N., Vogtt, K., Roy, S., Hirst, A. R., Hoell, A., Hamley, I. W., Ulijn, R. V., & Sefcik, J. (2011). Supramolecular structures of enzyme clusters. The Journal of Physical Chemistry Letters, 2, 1395–1399. DOI: 10.1021/jz200446j.

    Article  CAS  Google Scholar 

  • Kosmulski, M. (2001). Chemical properties of material surfaces. New York, NY, USA: Marcel Dekker.

    Book  Google Scholar 

  • Kroslak, M., Sefcik, J., & Morbidelli, M. (2007). Effects of temperature, pH and salt concentration on β-lactoglobulin deposition kinetics studied by optical waveguide lightmode spectroscopy. Biomacromolecules, 8, 963–970. DOI: 10.1021/bm060293+.

    Article  CAS  Google Scholar 

  • Lavalle, P., Picart, C., Mutterer, J., Gergely, C., Reiss, H., Voegel, J. C., Senger, B., & Schaaf, P. (2004). Modeling the buildup of polyelectrolyte multilayer films having exponential growth. The Journal of Physical Chemistry B, 108, 635–648. DOI: 10.1021/jp035740j.

    Article  CAS  Google Scholar 

  • Le Bon, C., Nicolai, T., & Durand, D. (1999). Growth and structure of aggregates of heat-denatured β-lactoglobulin. International Journal of Food Science & Technology, 34, 451–465. DOI: 10.1046/j.1365-2621.1999.00310.x.

    Article  Google Scholar 

  • Nakanishi, K., Sakiyama, T., & Imamura, K. (2001). On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. Journal of Bioscience and Bioengineering, 91, 233–244. DOI: 10.1016/s1389-1723(01)80127-4.

    Article  CAS  Google Scholar 

  • Nellen, P. M. (1992). Integrated optical input grating couplers as direct chemo- and biosensors. PhD thesis, ETH, Zurich, Switzerland. DOI: 10.3929/ethz-a-000669222.

    Google Scholar 

  • Pasche, S., Vörös, J., Griesser, H. J., Spencer, N. D., & Textor, M. (2005). Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. The Journal of Physical Chemistry B, 109, 17545–17552. DOI: 10.1021/jp050431+.

    Article  CAS  Google Scholar 

  • Picart, C., Ladam, G., Senger, B., Voegel, J. C., Schaaf, P., Cuisinier, F. J. G., & Gergely, C. (2001). Determination of structural parameters characterizing thin films by optical methods: A comparison between scanning angle reflectometry and optical waveguide lightmode spectroscopy. The Journal of Chemical Physics, 115, 1086–1094. DOI: 10.1063/1.1375156.

    Article  CAS  Google Scholar 

  • Redgwell, R. J., Schmitt, C., Beaulieu, M., & Curti, D. (2005). Hydrocolloids from coffee: physicochemical and functional properties of an arabinogalactan-protein fraction from green beans. Food Hydrocolloids, 19, 1005–1015. DOI: 10.1016/j.foodhyd.2004.12.010.

    Article  CAS  Google Scholar 

  • Relkin, P. (1996). Thermal unfolding of β-lactoglobulin, α-lactalbumin, and bovine serum albumin. A thermodynamic approach. Critical Reviews in Food Science and Nutrition, 36, 565–601. DOI: 10.1080/10408399609527740.

    Article  CAS  Google Scholar 

  • Saini, S., Kurrat, R., Prenosil, J. E., & Ramsden, J. J. (1994). Temperature dependence of pyrolyzed sol-gel planar waveguide parameters. Journal of Physics D: Applied Physics, 27, 1134–1138. DOI: 10.1088/0022-3727/27/6/009.

    Article  CAS  Google Scholar 

  • Sava, N., Van der Plancken, I., Claeys, W., & Hendrickx, M. (2005). The kinetics of heat-induced structural changes of β-lactoglobulin. Journal of Dairy Science, 88, 1646–1653. DOI: 10.3168/jds.s0022-0302(05)72836-8.

    Article  CAS  Google Scholar 

  • Schubert, D. W. (1997). Spin coating as a method for polymer molecular weight determination. Polymer Bulletin, 38, 177–184. DOI: 10.1007/s002890050035.

    Article  CAS  Google Scholar 

  • Sefcik, J., Kroslak, M., & Morbidelli, M. (2002). Optical response of porous titania-silica waveguides to surface charging in electrolyte filled pores. Helvetica Chimica Acta, 85, 3508–3515. DOI: 10.1002/1522-2675(200210)85:10〈3508::AIDHLCA3508〉3.0.CO;2-M.

    Article  CAS  Google Scholar 

  • Van Tassel, P. R. (2003). Statistical mechanical modeling of protein adsorption. Materialwissenschaft und Werkstofftechnik, 34, 1129–1132. DOI: 10.1002/mawe.200300703.

    Article  Google Scholar 

  • Visser, J., & Jeurnink, Th. J. M. (1997). Fouling of heat exchangers in the dairy industry. Experimental Thermal and Fluid Science, 14, 407–424. DOI: 10.1016/s0894-1777(96)00142-2.

    Article  CAS  Google Scholar 

  • Vogtt, K., Javid, N., Alvarez, E., Sefcik, J., & Bellissent-Funel, M. C. (2011). Tracing nucleation pathways in protein aggregation by using small angle scattering methods. Soft Matter, 7, 3906–3914. DOI: 10.1039/c0sm00978d.

    Article  CAS  Google Scholar 

  • Vörös, J. (2004). The density and refractive index of adsorbing protein layers. Biophysical Journal, 87, 553–561. DOI: 10.1529/biophysj.103.030072.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Sefcik.

Additional information

Dedicated to the memory of professor Elemír Kossaczký

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kroslak, M., Morbidelli, M. & Sefcik, J. Effects of temperature and concentration on mechanism and kinetics of thermally induced deposition from coffee extracts. Chem. Pap. 68, 1755–1766 (2014). https://doi.org/10.2478/s11696-014-0628-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0628-5

Keywords

Navigation