Skip to main content
Log in

Adsorption, chemisorption, and catalysis

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A short history of the relationships among adsorption, chemisorption, and catalysis with solid catalysts is reviewed. A special focus is on the development of quality and descriptions accuracy using computers, both for the modeling of elementary physical phenomena and adsorption, as well as for the solution of more complex problems like quantum chemical approach to chemisorption, kinetics over solid catalysts, and reactor systems. Modern approaches to the characterization of solid catalysts from the adsorption-desorption data based mainly on n-layer adsorption and non-linear three parameter BET isotherm regarding the volume of micropores as one of the parameters are demonstrated. Instrumentation techniques like infrared spectroscopy or NMR techniques for the analysis of the strength of component chemisorption are mentioned. As for the kinetics, a vague capability of the Langmuir-Hinshelwood-Hougen-Watson models to describe a reaction system in more complicated cases, e.g. bimolecular surface reactions, is discussed. In this context, the simplest model with a minimum number of parameters is advised. To estimate the most realistic values, intrinsic reaction kinetic and mass transport phenomena are taken into account. Usefulness of quantum mechanistic models for better understanding of the catalytic phenomena and more efficient design of catalysts are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balakrishnan, K., Sachdev, A., & Schwank, J. (1990). Chemisorption and FTIR study of bimetallic Pt-Au/SiO2 catalysts. Journal of Catalysis, 121, 441–455. DOI: 10.1016/0021-9517(90)90252-f.

    Article  CAS  Google Scholar 

  • Báleš, V., Bobok, D., & Kossaczký, E., (1983). Adsorption equilibriu on activated carbon of phenol, p-cresol, and p-nitroaniline in aqueous solutions. Chemical Papers, 37, 289–296.

    Google Scholar 

  • Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373–380. DOI: 10.1021/ja01145a126.

    Article  CAS  Google Scholar 

  • Bell, A. T., & Head-Gordon, M. (2011). Quantum mechanical modeling of catalytic processes. Annual Review of Chemical and Biomolecular Engineering, 2, 453–477. DOI: 10.1146/annurev-chembioeng-061010-114108.

    Article  CAS  Google Scholar 

  • Belskaya, O. B., Danilova, I. G., Kazakov, M. O., Mironenko, R. M., Lavrenov, A. V., & Likholobov, V. A. (2012). FTIR Spectroscopy of adsorbed probe molecules for analyzing the surface properties of supported Pt (Pd) catalysts. In T. Theophanides (Ed.), Infrared spectroscopy -Materials science, engineering and technology. Rijeka, Croatia: InTech. DOI: 10.5772/36275.

    Google Scholar 

  • Berkman, S., Morrell, J. C., & Egloff, G. (1940). Catalysis and adsorption. In S. Berkman (Ed.), Catalysis, inorganic and organic (pp. 60–152). New York, NY, USA: Reinhold.

    Google Scholar 

  • Berland, K., & Hyldgaard, P. (2013). An analysis of van der Waals density functional components: Binding and corrugation of benzene and C60 on boron nitride and graphene. Physical Review B, 87, 205421. DOI: 10.1103/PhysRevB.87.205421.

    Article  Google Scholar 

  • Berzelius, J. J. (1835). Sur un force jusqu’ici peu remarquée qui est probablement active dans la formation des composés organiques. Jahres-Bericht, 14, 237–245.

    Google Scholar 

  • Besedová, E., & Bobok, D. (1995). Adsorption of acetone and cumene on activated carbon. I: Single-component adsorption equilibria of acetone and cumene on Supersorbon HS-4. Adsorption Science & Technology, 12, 39–50.

    Google Scholar 

  • Besedová, E., Bobok, D., Bafrncová, S., & Steltenpohl, P. (2004). Modelling of gas phase adsorption on activated carbon I. Experiment and equilibrium model. Chemical Papers, 58, 391–396.

    Google Scholar 

  • Biffis, A., Corain, B., Cvengrošová, Z., Hronec, M., Jeřábek, K., & Králik, M. (1996). Relationships between physico-chemical properties and catalytic activity of polymer-supported palladium catalysts II. Mathematical model. Applied Catalysis A: General, 142, 327–346. DOI: 10.1016/0926-860x(96)00063-4.

    Article  CAS  Google Scholar 

  • Bobok, D., Kossaczký, E., & Ilavský, J. (1970a). Adsorption equilibria of n-heptane on the molecular sieve Calsit 5. Chemical Papers-Chemické Zvesti, 24, 3–12.

    CAS  Google Scholar 

  • Bobok, D., Kossaczký, E., & Ilavský, J. (1970b). Sorption of n-alkanes on the molecular sieves. I. Description of the equipment. Chemical Papers-Chemické Zvesti, 24, 134–138.

    CAS  Google Scholar 

  • Bobok, D., Kossaczký, E., & Šefčíková, M. (1975). Description of equilibrium data of the adsorption of n-heptane on molecular sieve 5 A by an actual form of the Freundlich isotherm. Chemical Papers-Chemické Zvesti, 29, 303–311.

    CAS  Google Scholar 

  • Bobok, D., Kossaczký, E., & Báleš, V. (1979). Adiabatic adsorption of carbon dioxide in fixed bed of the molecular sieve Calsit 5. Chemical Papers-Chemické Zvesti, 33, 357–364.

    CAS  Google Scholar 

  • Bobok, D., Havalda, I., Kossaczky, E., & Ondrejková, M., (1982). Calculation of nonlinearly placed parameters by the method of planned experiment. Chemical Papers-Chemické Zvesti, 36, 433–445.

    CAS  Google Scholar 

  • Bobok, D., Ondrejková, M., & Kossaczký, E. (1989). Diffusion coefficients of n-heptane in a particle of molecular sieve NaY. Chemical Papers-Chemické Zvesti, 43, 345–361.

    CAS  Google Scholar 

  • Bobok, D., & Besedová, E. (2001). The diffusion of chlorinated hydrocarbons in particles of activated carbon. Adsorption Science & Technology, 19, 813–820. DOI: 10.1260/02636170 11494600.

    Article  CAS  Google Scholar 

  • Bobok, D., Besedová, E., Sebeš, K., & Steltenpohl, P. (2004). Application of the adsorbate pore filling correction model to diffusion of ethanol vapours in activated carbon. Petroleum & Coal, 46(1), 41–46.

    CAS  Google Scholar 

  • Bond, G. C. (1957). Platinum metals as hydrogenation catalysts. Platinum Metals Review, 1, 87–93.

    Google Scholar 

  • Chang, D. J., Min, J. H., Moon, K. H., Park, Y. K., Jeon, J. K., & Ihm, S. K. (2004). Robust numerical simulation of pressure swing adsorption process with strong adsorbate CO2. Chemical Engineering Science, 59, 2715–2725. DOI:10.1016/j.ces.2004.01.067.

    Article  CAS  Google Scholar 

  • Che, M., & Vedrine, J. C. (2012). General introduction. In M. Che, & J. C. Vedrine (Eds.), Characterization of solid materials and heterogeneous catalysts — From structure to surface reactivity (pp. XXXI–XLIII). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/9783527645329.

    Chapter  Google Scholar 

  • Chovancová, M., Herain, J., Khandl, V., Moncmanová, A., & Valtýni, J. (1986). Dynamics of adsorption of industrial vapour on carbon sorbent. Chemical Papers-Chemické Zvesti, 40, 19–30.

    Google Scholar 

  • Dąbrowski, A. (2001). Adsorption — from theory to practice. Advances in Colloid and Interface Science, 93, 135–224. DOI: 10.1016/s0001-8686(00)00082-8.

    Article  Google Scholar 

  • Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. (2012). Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3, 38–45. DOI: 10.9790/5736-0313845.

    Article  CAS  Google Scholar 

  • Ertl, G. (1990). Elementary steps in heterogeneous catalysis. Angewandte Chemie International Edition, 29, 1219–1227. DOI:10.1002/anie.199012191.

    Article  Google Scholar 

  • Ertl, G. (2008). Reactions at surfaces: From atoms to complexity (Nobel lecture). Angewandte Chemie International Edition, 47, 3524–3535. DOI:10.1002/anie.200800480.

    Article  CAS  Google Scholar 

  • Evans, M. G., & Polanyi, M. (1935). Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Transactions of the Faraday Society, 31, 875–894. DOI: 10.1039/tf9353100875.

    Article  CAS  Google Scholar 

  • Eyring, H. (1935). The activated complex in chemical reactions. The Journal of Chemical Physics, 3, 107–115. DOI: 10.1063/1.1749604.

    Article  CAS  Google Scholar 

  • Farberow, C. A., Godinez-Garcia, A., Peng, G. W., Perez-Robles, J. F., Solorza-Feria, O., & Mavrikakis, M. (2013). Mechanistic studies of oxygen reduction by hydrogen on PdAg(110). ACS Catalysis, 3, 1622–1632. DOI: 10.1021/cs 4002699.

    Article  CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10. DOI:10.1016/j.cej.2009.09.013.

    Article  CAS  Google Scholar 

  • Freundlich, H. (1932). Of the adsorption of gases. Section II. Kinetics and energetics of gas adsorption. Introductory paper to section II. Transactions of the Faraday Society, 28, 195–201. DOI: 10.1039/tf9322800195.

    CAS  Google Scholar 

  • Frumkin, A. N. & Shlygin, A. I. (1935). Über die Platinelektrode. Acta Physico-Chimica URSS, 3, 791–818.

    Google Scholar 

  • Grassi, M., Kaykioglu, G., Belgiorno, V., & Lofrano, G. (2012). Removal of emerging contaminants from water and wastewater by adsorption process. In G. Lofrano (Ed.), Emerging compounds removal from wastewater (pp. 15–37). Dordrecht, The Netherlands: Springer. DOI: 10.1007/978-94-007-3916-1_2.

    Chapter  Google Scholar 

  • Grunze, M., Bozso, F., Ertl, G., & Weiss, M. (1978). Interaction of ammonia with Fe(111) and Fe(100) surfaces. Applications of Surface Science, 1, 241–265. DOI: 10.1016/0378-5963(78)90017-x.

    Article  CAS  Google Scholar 

  • He, X. B., Lyu, J. H., Zhou, H., Zhuang, G. L., Zhong, X., Wang, J. G., & Li, X. N. (2014). Density functional theory study of p-chloroaniline adsorption on Pd surfaces and clusters. International Journal of Quantum Chemistry, 114, 895–899. DOI: 10.1002/qua.24681.

    Article  CAS  Google Scholar 

  • Hinedi, Z. R., Johnston, C. T., & Erickson, C. (1993). Chemisorption of benzene on Cu-montmorillonite as characterized by FTIR and 13C MAS NMR. Clays and Clay Minerals, 41, 87–94. DOI:10.1346/ccmn.1993.0410109.

    Article  CAS  Google Scholar 

  • Huang, P., & Carter, E. A. (2008). Advances in correlated electronic structure methods for solids, surfaces, and nanostructures. Annual Review of Physical Chemistry, 59, 261–290. DOI: 10.1146/annurev.physchem.59.032607.093528.

    Article  CAS  Google Scholar 

  • Harkins, W. D., & Jura, G. (1944). Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. Journal of the American Chemical Society, 66, 1366–1373. DOI: 10.1021/ja01236a048.

    Article  CAS  Google Scholar 

  • Horniakova, J., Králik, M., Kaszonyi, A., & Mravec, D. (2001). A practical approach to the treatment of adsorption-desorption isotherms, acidity and catalytic behaviour of zeolite catalysts. Microporous and Mesoporous Materials, 46, 287–298. DOI:10.1016/s1387-1811(01)00309-2.

    Article  CAS  Google Scholar 

  • Hougen, O. A., & Watson, K. M. (1947). Chemical process principles. Part Three. Kinetics and catalysis. New York, NY, USA: Wiley.

    Google Scholar 

  • Hu, M. M., Linder, D. P., Buongiorno Nardelli, M., & Striolo, A. (2013). Hydrogen adsorption on platinum-gold bimetallic nanoparticles: A density functional theory study. The Journal of Physical Chemistry C, 117, 15050–15060. DOI: 10.1021/jp3126285.

    Article  CAS  Google Scholar 

  • Hudec, P. (2012). Textúra tuhých materiálov. Charakterizácia adsorbentov a katalyzátorov fyzikálnou adsorpciou dusíka (Texture of solid materials. Characterisation of adsorbents and catalysts via physical nitrogen adsorption). Bratislava, Slovakia: STU. (in Slovak)

    Google Scholar 

  • Ilavský, J., Kossaczký, E., & Bobok, D. (1970). Sorption of n-alkanes on the molecular sieves. II. A mathematical model for desorption. Chemical Papers-Chemické Zvesti, 24, 252–256.

    Google Scholar 

  • Jagiello, J., & Thommes, M. (2004). Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon, 42, 1227–1232. DOI:10.1016/j.carbon.2004.01.022.

    Article  CAS  Google Scholar 

  • Jiang, Z., Li, L., Xu, J., & Fang, T. (2013). Density functional periodic study of the dehydrogenation of methane on Pd(111) surface. Applied Surface Science, 286, 115–120. DOI:10.1016/j.apsusc.2013.09.030.

    Article  CAS  Google Scholar 

  • Keil, F. J. (2013). Complexities in modeling of heterogeneous catalytic reactions. Computers & Mathematics with Applications, 65, 1674–1697. DOI:10.1016/j.camwa.2012.11.023.

    Article  Google Scholar 

  • Klappenberger, F. (2014). Two-dimensional functional molecular nanoarchitectures — Complementary investigations with scanning tunneling microscopy and X-ray spectroscopy. Progress in Surface Science, 89, 1–55. DOI: 10.1016/j.progsurf.2013.10.002.

    Article  CAS  Google Scholar 

  • Koper, M. T. M. (2009). Electrocatalysis: theory and experiment at the interface. Faraday Discussions, 140, 11–24. DOI: 10.1039/b812859f.

    Article  Google Scholar 

  • Kossaczký, E., & Bobok, D. (1974). Diffusion of n-pentane vapour in a crystal of molecular sieve 5A. Chemical Papers-Chemické Zvesti, 28, 166–172.

    Google Scholar 

  • Kossaczký, E., Bobok, D., & Báleš, V. (1979). Adiabatic equilibrium desorption of carbon dioxide from molecular sieve fixed bed by the stream of inert gas. Chemical Papers-Chemické Zvesti, 33, 439–447.

    Google Scholar 

  • Kossaczký, E., Kapusta, T., & Bobok, D. (1986). Some problems of simulation of nonisothermal adsorption. Chemical Papers-Chemické Zvesti, 40, 3–18.

    Google Scholar 

  • Králik, M., Ilavský, J., Pašek, J., & Lehocký, P. (1990). Mathematical dynamic model of the continuous bubble column slurry reactor. Chemical Engineering and Processing: Process Intensification, 28, 127–132. DOI: 10.1016/0255-2701(90)80009-t.

    Article  Google Scholar 

  • Králik, M., Fišera, R., Zecca, M., D’Archivio, A. A., Galantini, L., Jeřábek, K., & Corain, B. (1998). Modelling of the deactivation of polymer-supported palladium catalysts in the hydrogenation of 4-nitrotoluene. Collection of Czechoslovak Chemical Communications, 63, 1074–1088. DOI:10.1135/cccc19981074.

    Article  Google Scholar 

  • Kralik, M., Vallusova, Z., Laluch, J., Mikulec, J., & Macho, V. (2008). Comparison of ruthenium catalysts supported on beta and mordenite in the hydrocycloalkylkation of benzene. Petroleum & Coal, 50(1), 44–51.

    CAS  Google Scholar 

  • Kratky, V., Kralik, M., Mecarova, M., Stolcova, M., Zalibera, L., & Hronec, M. (2002). Effect of catalyst and substituents on the hydrogenation of chloronitrobenzenes. Applied Catalysis A: General, 235, 225–231. DOI: 10.1016/s0926-860x(02)00 274-0.

    Article  CAS  Google Scholar 

  • Lecloux, A. J. (1981). Texture of catalysts. In J. R. Anderson, & M. Boudart (Eds.), Catalysis: Science and technology (Vol. 2, pp. 171–230). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • LeVan, D. M., Carta, G., & Yon, C. M. (1997). Adsorption and ion exchange. In R. D. Perry, & D. W. Green (Eds.), Perry’s chemical engineers’ handbook (7th ed., Chapter 16). New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Levenspiel, O. (1999). Chemical reaction engineering (3rd ed.). New York, NY, USA: Wiley.

    Google Scholar 

  • Levenspiel, O. (2002). Modeling in chemical engineering. Chemical Engineering Science, 57, 4691–4696. DOI: 10.1016/s0009-2509(02)00280-4.

    Article  CAS  Google Scholar 

  • Llewellyn, P. L., Bloch, E., & Bourrelly, S. (2012). Surface area/porosity, adsorption, diffusion. In M. Che, & J. C. Védrine (Eds.), Characterization of solid materials and heterogeneous catalysts: From structure to surface reactivity (Vol. 1 & 2, Chapter 19, pp. 853–879). Wienheim, Germany: Wiley-VCH. DOI: 10.1002/9783527645329.ch19.

    Chapter  Google Scholar 

  • Lyu, J. H., Wang, J. G., Lu, C. S., Ma, L., Zhang, Q. F., He, X. B., & Li, X. N. (2014). Size-dependent halogenated nitrobenzene hydrogenation selectivity of Pd nanoparticles. The Journal of Physical Chemistry C, 118, 2594–2601. DOI: 10.1021/jp411442f.

    Article  CAS  Google Scholar 

  • McKelvy, M. L., Britt, T. R., Davis, B. L., Gillie, J. K., Graves, F. G., & Lentz, L. A. (1998). Infrared spectroscopy. Analytical Chemistry, 70, 119–178. DOI: 10.1021/a1980006k.

    Article  Google Scholar 

  • Melo, D. Q., Neto, V. O. S., Oliveira, J. T., Barros, A. L., Gomes, E. C. C., Raulino, G. S. C., Longuinotti, E., & Nascimento, R. F. (2013). Adsorption equilibria of Cu2+, Zn2+, and Cd2+ on EDTA-functionalized silica spheres. Journal of Chemical & Engineering Data, 58, 798–806. DOI: 10.1021/je3013364.

    Article  CAS  Google Scholar 

  • Morbidelli, M., Gavriilidis, A., & Varma, A. (2005). Catalyst design: Optimal distribution of catalyst in pellets, reactors, and membranes. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Murzin, D., & Salmi, T. (2005). Catalytic kinetics. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Ostwald, W. (1896). Lehrbuch der allgemeinen Chemie (Vol. 2, Part 1). Leipzig, Germany: Engelmann. (in German)

    Google Scholar 

  • Pauling, L. (1949). A resonating-valence-bond theory of metals and intermetallic compounds. Proceedings of the Royal Society A, 196, 343–362. DOI:10.1098/rspa.1949.0032.

    Article  CAS  Google Scholar 

  • Peter, M., Flores Camacho, J. M., Adamovski, S., Ono, L. K., Dostert, K. H., O’Brien, C. P., Cuenya, B. R., Schauermann, S., & Freund, H. J. (2013). Trends in the binding strength of surface species on nanoparticles: how does the adsorption energy scale with the particle size?. Angewandte Chemie International Edition, 52, 5175–5179. DOI:10.1002/anie.201209476.

    Article  CAS  Google Scholar 

  • Rajniak, P., Brunovská, A., & Ilavský, J. (1982). Analysis of a one-component sorption in a single adsorbent particle by the orthogonal collocation method. II. Nonisothermal models. Chemical Papers-Chemické Zvesti, 36, 733–744.

    CAS  Google Scholar 

  • Rajniak, P. (1985). Analysis of a one-component sorption in a single adsorbent particle by the orthogonal collocation method. IV. One-point collocation method and linear-driving-force approximation. Chemical Papers-Chemické Zvesti, 39, 447–457.

    CAS  Google Scholar 

  • Rajniak, P., & Yang, R. T. (1993). A simple model and experiments for adsorption-desorption hysteresis: Water vapor on silica gel. AIChE Journal, 39, 774–786. DOI: 10.1002/aic.690390506.

    Article  CAS  Google Scholar 

  • Rajniak, P., & Yang, R. T. (1996). Unified network model for diffusion of condensable vapors in porous media. AIChE Journal, 42, 319–331. DOI:10.1002/aic.690420203.

    Article  CAS  Google Scholar 

  • Rajniak, P., Šoóš, M., & Yang, R. T. (1999). Unified network model for adsorption-desorption in systems with hysteresis. AIChE Journal, 45, 735–750. DOI: 10.1002/aic.690450409.

    Article  CAS  Google Scholar 

  • Risse, T., Carlsson, A., Bäumer, M., Klüner, T., & Freund, H. J. (2003). Using IR intensities as a probe for studying the surface chemical bond. Surface Science, 546, L829–L835. DOI:10.1016/j.susc.2003.09.044.

    Article  CAS  Google Scholar 

  • Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., & Unger, K. K. (1994). Recommendations for the characterization of porous solids (Technical Report) Pure and Applied Chemistry, 66, 1739–1758. DOI:10.1351/pac199466081739.

    Article  CAS  Google Scholar 

  • Robertson, A. J. B. (1983). The development of ideas on heterogeneous catalysis. Platinum Metals Review, 27, 31–39.

    CAS  Google Scholar 

  • Rothenberg, G. (2008). Catalysis: Concepts and green applications. Weinheim, Germany: Wiley-VCH. DOI:10.1002/9783527621866.

    Book  Google Scholar 

  • Ruthven, D. M. (1984). Principles of adsorption & adsorption processes. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Somorjai, G. A. (1994). Introduction to surface chemistry and catalysis. Hoboken, NJ, USA: Wiley.

    Google Scholar 

  • Satterfield, C. N. (1980). Heterogeneous catalysis in practice. New York, NY, USA: McGraw-Hill.

    Google Scholar 

  • Sautet, P. (2012). Quantum chemistry methods. In M. Che, & J. C. Védrine (Eds.), Characterization of solid materials and heterogeneous catalysts: From structure to surface reactivity (Vol. 1 & 2, Chapter 24, pp. 1119–1145). Wienheim, Germany: Wiley-VCH. DOI: 10.1002/9783527645329.24.

    Chapter  Google Scholar 

  • Shen, S. B., Pan, T. L., Liu, X. Q., Yuan, L., Wang, J. C., Zhang, Y. J., & Guo, Z. C. (2010). Adsorption of Rh(III) complexes from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion-exchange resin Diaion WA21J. Journal of Hazardous Materials, 179, 104–112. DOI:10.1016/j.jhazmat.2010.02.064.

    Article  CAS  Google Scholar 

  • Schneider, P. (1995). Adsorption isotherms of microporousmesoporous solids revisited. Applied Catalysis A: General, 129, 157–165. DOI: 10.1016/0926-860x(95)00110-7.

    Article  CAS  Google Scholar 

  • Scholtzová, E., Tunega, D., Madejová, J., Pálková, H., & Komadel, P. (2013). Theoretical and experimental study of montmorillonite intercalated with tetramethylammonium cation. Vibrational Spectroscopy, 66, 123–131. DOI:10.1016/j.vibspec.2013.02.006.

    Article  Google Scholar 

  • Schrödinger, E. (1926). An undulatory theory of the mechanics of atoms and molecules. Physical Review, 28, 1049–1070. DOI: 10.1103/PhysRev.28.1049.

    Article  Google Scholar 

  • Schwab, G. M. (1981). History of concepts in catalysis. In J. R. Anderson, & M. Boudart (Eds.), Catalysis: Science and technology (Vol. 2, pp. 1–11). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquérol, J., & Siemieniewska, T. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57, 603–619. DOI:10.1351/pac198557040603.

    Article  CAS  Google Scholar 

  • Šoóš, M., & Rajniak, P. (2001). Percolation model of adsorption-desorption equilibria with hysteresis. Chemical Papers, 55, 391–396.

    Google Scholar 

  • Thomas, J. M., & Thomas, W. J. (1997). Principles and practice of heterogeneous catalysis. Weinheim, Germany: VCH.

    Google Scholar 

  • Vannice, M. A. (2005). Kinetics of catalytic reactions. New York, NY, USA: Springer.

    Book  Google Scholar 

  • van Santen, R. A. (2010). Molecular catalytic kinetics concepts. In A. Cybulski, J. A. Moulijn, & A. Stankiewicz (Eds.), Novel concepts in catalysis and chemical eeactors: Improving the efficiency for the future (Chapter 1, pp. 1–30). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/9783527630882.ch1.

    Chapter  Google Scholar 

  • Wisniak, J. (2010). The history of catalysis. From the beginning to Nobel Prizes. Educación Química, 21, 60–69.

    CAS  Google Scholar 

  • Zaera, F. (2013). Shape-controlled nanostructures in heterogeneous catalysis. ChemSusChem, 6, 1797–1820. DOI:10.1002/cssc.201300398.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Králik.

Additional information

Dedicated to the memory of professor Elemír Kossaczký

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Králik, M. Adsorption, chemisorption, and catalysis. Chem. Pap. 68, 1625–1638 (2014). https://doi.org/10.2478/s11696-014-0624-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0624-9

Keywords

Navigation