Advertisement

Chemical Papers

, Volume 68, Issue 12, pp 1767–1773 | Cite as

Measurement of critical heat flux conditions under vacuum

  • Lenka Nemsilová
  • Pavol TimárJr.
  • Pavel TimárEmail author
  • Ján Stopka
  • Ladislav Štibrányi
  • Vladimír Báleš
Original Paper

Abstract

Determination of optimum conditions for waste oil (used motor oils, transformer oils) regeneration using vacuum distillation was attempted including the search for the optimum temperature difference between the heating surface and the boiling point of the liquid. Optimum temperature allowed the distillation equipment to operate at maximum performance. Equipment suitable for the measurement of boiling curves under atmospheric pressure and vacuum conditions was assembled. These curves were used to determine the optimum temperature difference of various substances including waste oils. Properties of pure substances, for example water, ethanol, hexane, heptane, isooctane, decane, or dodecane, were measured with this equipment under atmospheric pressure. Results of various liquids measurements under vacuum and atmospheric pressure are presented.

Keywords

waste oils boiling curve boiling regime optimum temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addoms, J. N. (1948). Heat transfer at high rates to water boiling outside cylinders. D.Sc. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA.Google Scholar
  2. Auracher, H., & Buchholz, M. (2005). Experiments on the fundamental mechanisms of boiling heat transfer. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 27, 1–22. DOI: 10.1590/s1678-58782005000100001.CrossRefGoogle Scholar
  3. Berenson, P. J. (1962). Experiments on pool-boiling heat transfer. International Journal of Heat and Mass Transfer, 5, 985–999. DOI: 10.1016/0017-9310(62)90079-0.CrossRefGoogle Scholar
  4. Bernardin, J. D., & Mudawar, I. (1999). The Leidenfrost point: Experimental study and assessment of existing models. Journal of Heat Transfer, 121, 894–903. DOI: 10.1115/1.2826080.CrossRefGoogle Scholar
  5. Bonilla, C. F., Grady, J. J., & Avery, G. W. (1965). Pool boiling heat transfer from scored surfaces. Chemical Engineering Progress Symposium Series, 61(57), 280–288.Google Scholar
  6. Chai, L. H., & Shoji, M. (2001). Boiling curves - bifurcation and catastrophe. International Journal of Heat and Mass Transfer, 44, 4175–4179. DOI: 10.1016/s0017-9310(01)00059-x.CrossRefGoogle Scholar
  7. Cichelli, M. T., & Bonilla, C. F. (1945). Heat transfer to liquids boiling under pressure. Transactions of AIChE, 41, 755–787.Google Scholar
  8. Clark, H. B., Strenge, P. S., & Westwater, J. W. (1959). Active sites of nucleate boiling. Chemical Engineering Progress Symposium Series, 55(29), 103–110.Google Scholar
  9. Cooke, D., & Kandlikar, S. G. (2011). Pool boiling heat transfer and bubble dynamics over plain and enhanced microchannels. Journal of Heat Transfer, 133(5), 052902. DOI: 10.1115/1.4003046.CrossRefGoogle Scholar
  10. Cryder, D. S., & Finalbargo, A. C. (1937). Heat transmission from metal surfaces to boiling liquids: Effect of temperature of liquid on liquid film coefficient. Transactions of AIChE, 50, 346–362.Google Scholar
  11. Farber, E. A., & Scorah, E. L. (1948). Heat transfer to water boiling under pressure. Transactions of the ASME, 70, 369–384.Google Scholar
  12. Griffith, P., & Wallis, J. D. (1960). The role of surface conditions in nucleate boiling. Chemical Engineering Progress Symposium Series, 56, 49–63.Google Scholar
  13. Hsu, S. T., & Schmidt, F. W. (1961). Measured variations in local surface temperatures in pool boiling of water. Journal of Heat Transfer, 83, 254–260. DOI: 10.1115/1.3682252.CrossRefGoogle Scholar
  14. Kim, S. H., Ahn, S. H., Kim, J. W., Kaviany, M., & Kim, H. M. (2013). Dynamics of water droplet on a heated nanotubes surface. Applied Physics Letters, 102(23), 233901. DOI: 10.1063/1.4809944.CrossRefGoogle Scholar
  15. Kurihara, H. M., & Myers, J. E. (1960). The effects of superheat and surface roughness on boiling coefficients. AIChE Journal, 6, 83–86. DOI: 10.1002/aic.690060117.CrossRefGoogle Scholar
  16. Lee, Y., Pioro, I., & Park, H. J. (1994). An experimental study on a plate type two-phase closed thermosyphon. In Y. Kobayashi, & K. Oshima (Eds.), Proceedings of the 4th International Heat Pipe Symposium, May 16–18, 1994. Tsukuba, Japan: Japan Association for Heat Pipes.Google Scholar
  17. Misale, M., Guglielmini, G., & Priarone, A. (2011). Nucleate boiling and critical heat flux of HFE-7100 in horizontal narrow spaces. Experimental Thermal and Fluid Science, 35, 772–779. DOI: 10.1016/j.expthermflusci.2010.06.009.CrossRefGoogle Scholar
  18. Nakoryakov, V. E., Misyura, S. Ya., & Elistratov, S. L. (2012). The behavior of water droplets on the heated surface. International Journal of Heat and Mass Transfer, 55, 6609–6617. DOI: 10.1016/j.ijheatmasstransfer.2012.06.069.CrossRefGoogle Scholar
  19. Nukiyama, S. (1934). Maximum and minimum values of heat Q transmitted from metal to boiling water under atmospheric pressure. Journal of Japanese Society of Mechanical Engineering, 37, 367–374. (in Japanese)Google Scholar
  20. Pioro, I. L., Park, H. J., & Lee, Y. (1996). Heat transfer in a two-phase closed thermosyphon: Horizontal flat plate type. In Proceedings of the 5th International Symposium on Thermal Engineering and Science for Cold Regions, May 19–22, 1996 (pp. 489–494). Ottawa, Canada.Google Scholar
  21. Pioro, I. (1997). Boiling heat transfer characteristics of thin liquid layers in a horizontally flat two-phase thermosyphon. In Proceedings of the 10th International Heat Pipe Conference, September 21–25, 1997 (Paper H1-5). Stuttgart, Germany.Google Scholar
  22. Pioro, L. S., & Pioro, I. L. (1997). Industrial two-phase thermosyphons (Chapters 2 and 3). New York, NY, USA: Begell House.Google Scholar
  23. Rops, C. M., Lindken, R. H., Velthuis, J. F. M., & Westerweel, J. (2009). Enhanced heat transfer in confined pool boiling. International Journal of Heat and Fluid Flow, 30, 751–760. DOI: 10.1016/j.ijheatfluidflow.2009.03.007.CrossRefGoogle Scholar
  24. Tolubinskiy, V. I. (1980). Heat transfer under boiling (Chapters 4 and 5). Kiev, URSS: Naukova Dumka. (in Russian)Google Scholar
  25. Tong, L. S., & Tang, Y. S. (1997). Boiling heat transfer and two-phase flow (2nd ed.). Washington, DC, USA: Taylor & Francis.Google Scholar
  26. Wang, X. F., Rahman, Md. A., Jacobi, A. M., & Hrnjak, P. S. (2013). Dynamic wetting behavior and water drops on microgrooved surfaces. Heat Transfer Engineering, 34, 1088–1098. DOI: 10.1080/01457632.2013.763544.CrossRefGoogle Scholar
  27. Yang, L., & Shivpuri, R. (2007). A water evaporation based model for lubricant dryoff on die surfaces heated beyond the Leidenfrost point. Journal of Manufacturing Science and Engineering, 129, 717–725. DOI: 10.1115/1.2738126.CrossRefGoogle Scholar
  28. Young, R. K., & Hammel, R. L. (1965). Higher coefficients for heat transfer with nucleate boiling. Chemical Engineering Progress Symposium Series, 61(59), 264–270.Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2014

Authors and Affiliations

  • Lenka Nemsilová
    • 1
  • Pavol TimárJr.
    • 1
  • Pavel Timár
    • 1
    Email author
  • Ján Stopka
    • 1
  • Ladislav Štibrányi
    • 1
  • Vladimír Báleš
    • 1
  1. 1.Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food TechnologySlovak University of Technology in BratislavaBratislavaSlovakia

Personalised recommendations