Skip to main content
Log in

Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The catalytic oxidation of a synthetic water-soluble analogue of vitamin E (α-tocopherol, Trolox) by tyrosinase enzyme in the presence of molecular oxygen was studied using electrochemical techniques. This specific enzymatic reaction was exploited for the preparation of a biosensor based on the amperometric reduction of the electroactive product (α-tocoquinone) formed. An electroactive surface of the transducers used was covered with a thin conductive layer of Nafion containing tyrosinase. Significant progress in sensitivity towards polyphenolic compounds such as Trolox was achieved at CPE with carbon nanotubes immobilised on its surface (CPE/CNTs) as electric transducers. The biosensor so developed can be used for the direct determination of total phenolic content (TPC). This important nutrition value can be expressed as the mass equivalent of Trolox, i.e. Trolox equivalent antioxidant capacity (TEAC), which could be used as an alternative to the evaluations currently used based on spectrophotometric methods such as total radical-trapping antioxidant parameter (TRAP), ferric reducing-antioxidant power (FRAP) or 1,1-diphenyl-2-picrylhydrazyl spectrometric assay (DPPH). The effects of the enzyme amount in the Nafion layer (3.0 µg), the influence of the nanoparticles present, the optimal pH value suitable for enzymatic activity (7.0), and the kinetics of enzymatic and electrochemical reactions were studied using cyclic voltammetry (CV). The determination of optimal conditions for amperometry in batch configuration (working potential, speed of stirring, volume of sample, calibration curve, etc.) was not a target of this electrochemical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barisci, J. N., Wallace, G. G., & Baughman, R. H. (2000) Electrochemical characterization of single-walled carbon nanotube electrodes. Journal of the Electrochemical Society, 147, 4580–4583. DOI: 10.1149/1.1394104.

    Article  CAS  Google Scholar 

  • Brigelius-Flohé, R., & Traber, M. G. (1999) Vitamin E: function and metabolism. The FASEB Journal, 13, 1145–1155.

    Google Scholar 

  • Cort, W. M., Vicente, T. S., Waysek, E. H., & Williams, B. D. (1983) Vitamin E content of feedstuffs determined by high-performance liquid chromatographic fluorescence. Journal of Agricultural and Food Chemistry, 31, 1330–1333. DOI: 10.1021/jf00120a045.

    Article  CAS  Google Scholar 

  • Giacomelli, C., Giacomelli, F. C., Alves, L. O., Timbola, A. K., & Spinelli, A. (2004) Electrochemistry of vitamin E hydroalcoholic solutions. Journal of the Brazilian Chemical Society, 15, 748–755. DOI: 10.1590/s0103-50532004000500022.

    Article  CAS  Google Scholar 

  • Golumbic, C., & Mattill, H. A. (1940) The oxidation of vitamin E. The Journal of Biological Chemistry, 134, 535–541.

    CAS  Google Scholar 

  • Ismaya, W. T., Rozeboom, H. J., Weijn, A., Mes, J. J., Fusetti, F., Wichers, H. J., & Dijkstra, B. W. (2011) Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry, 50, 5477–5486. DOI: 10.1021/bi200395t.

    Article  CAS  Google Scholar 

  • Kalcher, K., Kaufmann, J. M., Wang, J., Svancara, I., Vytřas, K., Neuhold, C., & Yang, Z. (1995) Sensors based on carbon paste in electrochemical analysis: A review with particular emphasis on the period 1990–1993. Electroanalysis, 7, 5–22. DOI: 10.1002/elan.1140070103.

    Article  CAS  Google Scholar 

  • Kotzian, P., Brázdilová, P., Kalcher, K., & Vytřas, K. (2007) Mediators of electron transfer in amperometric enzyme biosensors. In K. Vytřas, & K. Kalcher (Eds.), Sensing in electroanalysis (Vol. 2, pp. 181–199). Pardubice, Czech Republic: University of Pardubice.

    Google Scholar 

  • Laguerre, M., Lecomte, J., & Villeneuve, P. (2007) Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Progress in Lipid Research, 46, 244–282. DOI: 10.1016/j.plipres.2007.05.002.

    Article  CAS  Google Scholar 

  • Mayer, A. M. (2006) Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 67, 2318–2331. DOI: 10.1016/j.phytochem.2006.08.006.

    Article  CAS  Google Scholar 

  • Mikysek, T., Švancara, I., Kalcher, K., Bartoš, M., Vytřas, K., & Ludvík, J. (2009) New approaches to the characterization of carbon paste electrodes using the ohmic resistance effect and qualitative carbon paste indexes. Analytical Chemistry, 81, 6327–6333. DOI: 10.1021/ac9004937.

    Article  CAS  Google Scholar 

  • Moyad, M. A., Brumfield, S. K., & Pienta, K. J. (1999) Vitamin E, alpha and gamma tocopherol, and prostate cancer. Seminars in Urologic Oncology, 17, 85–90.

    CAS  Google Scholar 

  • Núñez Delicado, E., Sánchez Ferrer, A., & García Carmona, F. (1997) A kinetic study of the one-electron oxidation of Trolox C by the hydroperoxidase activity of lipoxygenase. Biochimica et Biophysica Acta-General Subjects, 1335, 127–134. DOI: 10.1016/s0304-4165(96)00130-4.

    Article  Google Scholar 

  • Ozgen, M., Reese, R. N., Tulio, A. Z., Jr., Scheerens, J. C., & Miller, A. R. (2006) Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. Journal of Agricultural and Food Chemistry, 54, 1151–1157. DOI: 10.1021/jf051960d.

    Article  CAS  Google Scholar 

  • Pedrosa, V. A., Codognoto, L., & Avaca, L. A. (2003) Electroanalytical determination of 4-nitrophenol by square wave voltammetry on diamond electrodes. Journal of the Brazilian Chemical Society, 14, 530–535. DOI: 10.1590/s0103-50532003000400007.

    Article  CAS  Google Scholar 

  • Pohanka, M., & Skládal, P. (2008) Electrochemical biosensors — principles and applications. Journal ofApplied Biomedicine, 6, 57–64.

    CAS  Google Scholar 

  • Pourcel, L., Routaboul, J. M., Cheynier, V., Lepiniec, L., & Debeaujon, I. (2006) Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science, 12, 29–36. DOI: 10.1016/j.tplants.2006.11.006.

    Article  Google Scholar 

  • Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005) Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition, 81, 215S–217S.

    CAS  Google Scholar 

  • Simons, K., & Ikonen, E. (1997) Functional rafts in cell membranes. Nature, 387, 569–572. DOI: 10.1038/42408.

    Article  CAS  Google Scholar 

  • Solná, R., & Skládal, P. (2005) Amperometric flow-injection determination of phenolic compounds using a biosensor with immobilized laccase, peroxidase and tyrosinase. Electroanalysis, 17, 2137–2146. DOI: 10.1002/elan.200403343.

    Article  Google Scholar 

  • Sun, W., Jiang, Q., Yang, M., & Jiao, K. (2008) Electrochemical behaviors of hydroquinone on a carbon paste electrode with ionic liquid as binder. Bulletin of the Korean Chemical Society, 29, 915–920.

    Article  Google Scholar 

  • Sýs, M., Pekec, B., Kalcher, K., & Vytřas, K. (2013) Amperometric enzyme carbon paste-based biosensor for quantification of hydroquinone and polyphenolic antioxidant capacity. International Journal of Electrochemical Science, 8, 9030–9040.

    Google Scholar 

  • Švancara, I., Vytřas, K., Barek, J., & Zima, J. (2001) Carbon paste electrode in modern electroanalysis. Critical Reviews in Analytical Chemistry, 31, 311–345. DOI: 10.1080/20014091076785.

    Article  Google Scholar 

  • Švancara, I., Metelka, R., & Vytřas, K. (2005) Piston driven carbon paste holders for electrochemical measurements. In K. Vytřas, & K. Kalcher (Eds.), Sensing in electroanalysis (pp. 7–18). Pardubice, Czech Republic: University of Pardubice.

    Google Scholar 

  • Švancara, I., Kalcher, K., Walcarius, A., & Vytřas, K. (2012) Electroanalysis with carbon paste electrodes. Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  • Vytřas, K., Švancara, I., & Metelka, R. (2009) Carbon paste electrodes in electroanalytical chemistry. Journal of the Serbian Chemical Society, 74, 1021–1033. DOI: 10.2298/jsc0910021v.

    Article  Google Scholar 

  • Wang, J., Musameh, M., & Lin, Y. (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society, 125, 2408–2409. DOI: 10.1021/ja028951v.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Vytřas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sýs, M., Metelka, R., Mikysek, T. et al. Improvement of enzyme carbon paste-based biosensor using carbon nanotubes for determination of water-soluble analogue of vitamin E. Chem. Pap. 69, 150–157 (2015). https://doi.org/10.2478/s11696-014-0608-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0608-9

Keywords

Navigation